Ari1009's picture
Update app.py
2f27065 verified
import gradio as gr
import cv2
import requests
import os
import torch
import numpy as np
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression
from yolov5.utils.augmentations import letterbox
import gradio_client.utils
# --- Apply Monkey-Patch to Handle Boolean Schemas ---
# Save the original function
original_function = gradio_client.utils._json_schema_to_python_type
# Define a patched version that handles boolean schemas
def patched_function(schema, defs=None):
if isinstance(schema, bool):
return "any" if schema else "none"
return original_function(schema, defs)
# Apply the patch
gradio_client.utils._json_schema_to_python_type = patched_function
# --- End of Monkey-Patch ---
# Example URLs for downloading images
file_urls = [
"https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0",
"https://www.dropbox.com/scl/fi/asrmao4b4fpsrhqex8kog/2_jpg.rf.b87583d95aa220d4b7b532ae1948e7b7.jpg?rlkey=jkmux5jjy8euzhxizupdmpesb&st=v3ld14tx&dl=0",
"https://www.dropbox.com/scl/fi/fi0e8zxqqy06asnu0robz/3_jpg.rf.d2932cce7e88c2675e300ececf9f1b82.jpg?rlkey=hfdqwxkxetabe38ukzbb39pl5&st=ga1uouhj&dl=0",
"https://www.dropbox.com/scl/fi/ruobyat1ld1c33ch5yjpv/4_jpg.rf.3395c50b4db0ec0ed3448276965b2459.jpg?rlkey=j1m4qa0pmdh3rlr344v82u3am&st=lex8h3qi&dl=0",
"https://www.dropbox.com/scl/fi/ok3izk4jj1pg6psxja3aj/5_jpg.rf.62f3dc64b6c894fbb165d8f6e2ee1382.jpg?rlkey=euu16z8fd8u8za4aflvu5qg4v&st=pwno39nc&dl=0",
"https://www.dropbox.com/scl/fi/8r1fpwxkwq7c2i6ky6qv5/10_jpg.rf.c1785c33dd3552e860bf043c2fd0a379.jpg?rlkey=fcw41ppgzu0ao7xo6ijbpdi4c&st=to2udvxb&dl=0",
"https://www.dropbox.com/scl/fi/ihiid7hbz1vvaoqrstwa5/7_jpg.rf.dfc30f9dc198cf6697d9023ac076e822.jpg?rlkey=yh67p4ex52wn9t0bfw0jr77ef&st=02qw80xa&dl=0",
]
def download_file(url, save_name):
"""Downloads a file from a URL."""
if not os.path.exists(save_name):
file = requests.get(url)
with open(save_name, 'wb') as f:
f.write(file.content)
# Download images
for i, url in enumerate(file_urls):
download_file(url, f"image_{i}.jpg")
# Load YOLOv5 model
model_path = "best.pt" # Ensure this path points to your YOLOv5 model file in the Space
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available
model = attempt_load(model_path, device=device)
model.eval() # Set the model to evaluation mode
def preprocess_image(image_path):
img0 = cv2.imread(image_path)
img = letterbox(img0, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB, to 3x640x640
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
return img, img0
def infer(model, img):
with torch.no_grad():
pred = model(img)[0]
return pred
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0]
pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, :4] /= gain
coords[:, :4].clip_(min=0, max=img1_shape[0]) # clip boxes
return coords
def postprocess(pred, img0_shape, img):
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False)
results = []
for det in pred: # detections per image
if len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0_shape).round()
for *xyxy, conf, cls in reversed(det):
results.append((xyxy, conf, cls))
return results
def detect_objects(image_path):
img, img0 = preprocess_image(image_path)
pred = infer(model, img)
results = postprocess(pred, img0.shape, img)
return results
def draw_bounding_boxes(img, results):
for (x1, y1, x2, y2), conf, cls in results:
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(img, f'{model.names[int(cls)]} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
return img
def show_preds_image(filepath):
results = detect_objects(filepath)
img0 = cv2.imread(filepath)
img_with_boxes = draw_bounding_boxes(img0, results)
return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
# Define Gradio components
input_component = gr.components.Image(type="filepath", label="Input Image")
output_component = gr.components.Image(type="numpy", label="Output Image")
# Create Gradio interface
interface = gr.Interface(
fn=show_preds_image,
inputs=input_component,
outputs=output_component,
title="Lung Nodule Detection",
examples=[
"image_1.jpg",
"image_2.jpg",
"image_3.jpg",
"image_4.jpg",
"image_5.jpg",
"image_6.jpg",
],
description=' Lung cancer cell detection',
live=False,
)
interface.launch()