Spaces:
Sleeping
Sleeping
File size: 12,933 Bytes
8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee 8fbc17c ddbcbee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import json
import os
import re
import pandas as pd
import random
from dotenv import load_dotenv
from langchain_tavily import TavilySearch
import google.generativeai as genai
import gradio as gr
load_dotenv()
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# User sessions for mock interviews
# user_sessions = {}
genai.configure(api_key=GOOGLE_API_KEY)
# Load LeetCode data
OUTPUT_FILE = "Interview-QA-Practice-Bot/leetcode_downloaded.xlsx"
LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
print(f"Loaded {len(LEETCODE_DATA)} LeetCode problems from local file.")
# βββ Tool 1: Get Daily Coding Question ββββββββββββββββββββββββββ
def get_daily_coding_question(query=""):
"""Get 3 random coding questions (one from each difficulty level)"""
response = "Here are your coding challenges for today:\n\n"
problem_match = re.search(r'problem[\s_]*(\d+)', query, re.IGNORECASE)
if problem_match:
problem_no = int(problem_match.group(1))
specific_problem = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == problem_no]
if not specific_problem.empty:
p = specific_problem.iloc[0]
response = f"**Problem {p['problem_no']}: {p['problem_statement']}**\n"
response += f"**Difficulty**: {p['problem_level']}\n"
response += f"**Link**: {p['problem_link']}\n\n"
response += "Good luck with this problem!"
return {"status": "success", "response": response}
else:
return {"status": "error", "response": "Problem not found. Try a different number!"}
easy = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Easy']
medium = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Medium']
hard = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Hard']
for label, df in [("π’ Easy", easy), ("π‘ Medium", medium), ("π΄ Hard", hard)]:
if not df.empty:
q = df.sample(1).iloc[0]
response += f"**{label} Challenge**\n"
response += f"Problem {q['problem_no']}: {q['problem_statement']}\n"
response += f"Link: {q['problem_link']}\n\n"
response += "Choose one that matches your skill level and start coding!"
return {"status": "success", "response": response}
# βββ Tool 2: Fetch Interview Questions ββββββββββββββββββββββββββ
def fetch_interview_questions(query):
if not TAVILY_API_KEY:
return {"status": "error", "response": "Tavily API key not configured."}
tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=3)
search_response = tavily.invoke(f"{query} interview questions")
# Extract the results list from the response dictionary
results = search_response.get("results", []) if isinstance(search_response, dict) else search_response
if not results:
return {"status": "success", "response": f"No results found for '{query}' interview questions."}
search_results = f"Here are the top 3 resources for {query} interview questions:\n\n"
for i, res in enumerate(results[:3], 1):
t = res.get('title', 'No title')
u = res.get('url', 'No URL')
c = res.get('content', '')
snippet = c[:200] + '...' if len(c) > 200 else c
search_results += f"**{i}. {t}**\nURL: {u}\nPreview: {snippet}\n\n"
model = genai.GenerativeModel('gemini-1.5-flash')
guidance = model.generate_content(f"""
Based on the topic '{query}', provide practical advice on how to prepare for and tackle interview questions in this area.
Include:
1. Key concepts to focus on
2. Common question types
3. How to structure answers
4. Tips for success
Keep it concise and actionable.
""").text
final = search_results + "\n**π‘ How to Tackle These Interviews:**\n\n" + guidance
return {"status": "success", "response": final}
# βββ Tool 3: Simulate Mock Interview ββββββββββββββββββββββββββ
# Enhanced user session management
user_sessions = {}
def simulate_mock_interview(query, user_id="default"):
session_key = f"mock_{user_id}"
if session_key not in user_sessions:
user_sessions[session_key] = {
"stage": "tech_stack",
"tech_stack": "",
"questions_asked": [],
"answers_given": [],
"current_question": "",
"question_count": 0,
"difficulty": "medium", # Added difficulty level
"feedback_history": [] # Added feedback tracking
}
session = user_sessions[session_key]
model = genai.GenerativeModel('gemini-1.5-flash')
# Tech stack collection stage
if session["stage"] == "tech_stack":
session["stage"] = "waiting_tech_stack"
return {"status": "success", "response": (
"Welcome to your mock interview! π―\n\n"
"Please tell me about your tech stack (e.g., Python, React, multi-agent systems) "
"or the role you're preparing for (e.g., software engineer, ML engineer)."
)}
elif session["stage"] == "waiting_tech_stack":
session["tech_stack"] = query
session["stage"] = "interviewing"
difficulty_options = " (easy/medium/hard)"
q = model.generate_content(f"""
Generate a relevant interview question for tech stack: {query}
Ensure it tests technical knowledge and problem-solving.
Keep it concise and return only the question.
""").text.strip()
session.update({
"current_question": q,
"questions_asked": [q],
"question_count": 1
})
return {"status": "success", "response": (
f"Great! Based on your tech stack ({query}), let's start your mock interview.\n\n"
f"**Question 1:** {q}\n"
f"Set difficulty level{difficulty_options} or proceed. Type 'quit' to end and get your summary."
)}
elif session["stage"] == "interviewing":
if query.lower().strip() in ["easy", "medium", "hard"]:
session["difficulty"] = query.lower().strip()
return {"status": "success", "response": (
f"Difficulty set to {session['difficulty']}. Let's continue!\n\n"
f"**Question {session['question_count']}:** {session['current_question']}\n\n"
"Take your time to answer. Type 'quit' to end and get your summary."
)}
if query.lower().strip() == "quit":
return end_mock_interview(session_key)
# Store answer and provide feedback
session["answers_given"].append(query)
feedback = model.generate_content(f"""
Question: {session['current_question']}
Answer: {query}
Tech Stack: {session['tech_stack']}
Difficulty: {session['difficulty']}
Provide concise, constructive feedback:
- What went well
- Areas to improve
- Missing points or better approach
- Suggested follow-up topic
""").text.strip()
session["feedback_history"].append(feedback)
# Generate next question with context
next_q = model.generate_content(f"""
Tech stack: {session['tech_stack']}
Difficulty: {session['difficulty']}
Previous questions: {session['questions_asked']}
Follow-up topic suggestion: {feedback.split('\n')[-1] if feedback else ''}
Generate a new, relevant interview question unseen before.
Ensure it aligns with the tech stack and difficulty.
Return only the question.
""").text.strip()
session["questions_asked"].append(next_q)
session["current_question"] = next_q
session["question_count"] += 1
return {"status": "success", "response": (
f"**Feedback on your previous answer:**\n{feedback}\n\n"
f"**Question {session['question_count']}:** {next_q}\n\n"
"Type 'quit' to end the interview and get your summary, or set a new difficulty (easy/medium/hard)."
)}
def end_mock_interview(session_key):
session = user_sessions[session_key]
model = genai.GenerativeModel('gemini-1.5-flash')
summary = model.generate_content(f"""
Mock Interview Summary:
Tech Stack: {session['tech_stack']}
Difficulty: {session['difficulty']}
Questions Asked: {session['questions_asked']}
Answers Given: {session['answers_given']}
Feedback History: {session['feedback_history']}
Provide a concise overall assessment:
- Strengths
- Areas for improvement
- Key recommendations
- Common mistakes to avoid
""").text.strip()
del user_sessions[session_key]
return {"status": "success", "response": (
"π― **Mock Interview Complete!**\n\n"
f"**Interview Summary:**\n"
f"- Tech Stack: {session['tech_stack']}\n"
f"- Difficulty: {session['difficulty']}\n"
f"- Questions Asked: {len(session['questions_asked'])}\n\n"
"**Overall Assessment:**\n" + summary + "\n\n"
"Great jobβuse this feedback to level up! πͺ"
)}
# βββ Main Agent Class ββββββββββββββββββββββββββββββββββββββββββ
class InterviewPrepAgent:
def __init__(self):
self.model = genai.GenerativeModel('gemini-1.5-flash')
self.tools = {
"get_daily_coding_question": get_daily_coding_question,
"fetch_interview_questions": fetch_interview_questions,
"simulate_mock_interview": simulate_mock_interview
}
def classify_query(self, query):
prompt = f"""
Analyze this user query and determine which tool to use:
Query: "{query}"
Tools:
1. get_daily_coding_question β for coding problems, leetcode, daily challenges
2. fetch_interview_questions β for topic-specific interview question resources
3. simulate_mock_interview β for mock interview practice or behavioral interviews
Rules:
- If query mentions 'mock', 'interview', 'simulate', or 'practice', choose simulate_mock_interview
- If query mentions 'coding', 'leetcode', 'daily', 'problem', choose get_daily_coding_question
- If query asks for interview questions on a specific technology (like 'Python interview questions'), choose fetch_interview_questions
- If unclear, default to simulate_mock_interview
Respond with JSON
"""
resp = self.model.generate_content(prompt).text.strip()
if resp.startswith("```json"):
resp = resp.replace("```json", "").replace("```", "").strip()
j = json.loads(resp)
return j.get("tool"), j.get("args", {})
def process_query(self, query, user_id="default"):
tool, args = self.classify_query(query)
if tool not in self.tools:
return {"text": "Sorry, I didn't get that. Ask for coding practice, interview questions, or mock interview!"}
if tool == "simulate_mock_interview":
result = self.tools[tool](args.get("query", query), user_id)
else:
result = self.tools[tool](args.get("query", query))
return {"text": result["response"]}
# βββ Gradio Interface ββββββββββββββββββββββββββββββββββββββββββ
agent = InterviewPrepAgent()
def chat_interface(message, history):
resp = agent.process_query(message, user_id="gradio_user")
return resp.get("text", "Something went wrong, try again.")
def create_examples():
return [
["Give me daily coding questions"],
["Start a mock interview"],
["Python interview questions"],
["React interview questions"],
["Show me problem 1"],
["Data structures interview questions"],
]
with gr.Blocks(title="Interview Prep Assistant", theme=gr.themes.Soft()) as interface:
gr.Markdown("# π― Interview Prep Assistant\nYour AI-powered interview practice companion!")
chatbot = gr.ChatInterface(
fn=chat_interface,
examples=create_examples(),
chatbot=gr.Chatbot(height=500, show_label=False, container=True, type="messages"),
textbox=gr.Textbox(placeholder="Type your message here...")
)
gr.Markdown(f"\n---\n**System Status:**\n- β
Google API Configured\n- β
{len(LEETCODE_DATA)} LeetCode Problems Loaded\n- {'β
' if TAVILY_API_KEY else 'β'} Tavily Search Available")
if __name__ == "__main__":
interface.launch(server_port=8000, share=True, show_error=True, quiet=False)
|