File size: 12,933 Bytes
8fbc17c
 
 
 
 
 
 
 
 
 
 
 
 
 
ddbcbee
 
8fbc17c
 
 
ddbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fbc17c
ddbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fbc17c
ddbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fbc17c
ddbcbee
 
 
 
 
8fbc17c
 
ddbcbee
 
 
8fbc17c
ddbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fbc17c
ddbcbee
 
 
8fbc17c
 
ddbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fbc17c
 
 
 
 
 
 
 
 
ddbcbee
 
 
8fbc17c
ddbcbee
8fbc17c
ddbcbee
 
 
 
8fbc17c
ddbcbee
 
 
 
 
8fbc17c
ddbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fbc17c
 
 
 
 
ddbcbee
 
8fbc17c
 
 
ddbcbee
 
 
 
 
 
8fbc17c
 
ddbcbee
 
8fbc17c
 
 
ddbcbee
 
8fbc17c
ddbcbee
8fbc17c
 
ddbcbee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import json
import os
import re
import pandas as pd
import random
from dotenv import load_dotenv
from langchain_tavily import TavilySearch
import google.generativeai as genai
import gradio as gr

load_dotenv()
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# User sessions for mock interviews
# user_sessions = {}

genai.configure(api_key=GOOGLE_API_KEY)

# Load LeetCode data
OUTPUT_FILE = "Interview-QA-Practice-Bot/leetcode_downloaded.xlsx"
LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
print(f"Loaded {len(LEETCODE_DATA)} LeetCode problems from local file.")

# β€”β€”β€” Tool 1: Get Daily Coding Question β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
def get_daily_coding_question(query=""):
    """Get 3 random coding questions (one from each difficulty level)"""
    response = "Here are your coding challenges for today:\n\n"

    problem_match = re.search(r'problem[\s_]*(\d+)', query, re.IGNORECASE)
    if problem_match:
        problem_no = int(problem_match.group(1))
        specific_problem = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == problem_no]
        if not specific_problem.empty:
            p = specific_problem.iloc[0]
            response = f"**Problem {p['problem_no']}: {p['problem_statement']}**\n"
            response += f"**Difficulty**: {p['problem_level']}\n"
            response += f"**Link**: {p['problem_link']}\n\n"
            response += "Good luck with this problem!"
            return {"status": "success", "response": response}
        else:
            return {"status": "error", "response": "Problem not found. Try a different number!"}

    easy = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Easy']
    medium = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Medium']
    hard = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Hard']

    for label, df in [("🟒 Easy", easy), ("🟑 Medium", medium), ("πŸ”΄ Hard", hard)]:
        if not df.empty:
            q = df.sample(1).iloc[0]
            response += f"**{label} Challenge**\n"
            response += f"Problem {q['problem_no']}: {q['problem_statement']}\n"
            response += f"Link: {q['problem_link']}\n\n"

    response += "Choose one that matches your skill level and start coding!"
    return {"status": "success", "response": response}

# β€”β€”β€” Tool 2: Fetch Interview Questions β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
def fetch_interview_questions(query):
    if not TAVILY_API_KEY:
        return {"status": "error", "response": "Tavily API key not configured."}

    tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=3)
    search_response = tavily.invoke(f"{query} interview questions")

    # Extract the results list from the response dictionary
    results = search_response.get("results", []) if isinstance(search_response, dict) else search_response

    if not results:
        return {"status": "success", "response": f"No results found for '{query}' interview questions."}

    search_results = f"Here are the top 3 resources for {query} interview questions:\n\n"
    for i, res in enumerate(results[:3], 1):
        t = res.get('title', 'No title')
        u = res.get('url', 'No URL')
        c = res.get('content', '')
        snippet = c[:200] + '...' if len(c) > 200 else c
        search_results += f"**{i}. {t}**\nURL: {u}\nPreview: {snippet}\n\n"

    model = genai.GenerativeModel('gemini-1.5-flash')
    guidance = model.generate_content(f"""
        Based on the topic '{query}', provide practical advice on how to prepare for and tackle interview questions in this area.
        Include:
        1. Key concepts to focus on
        2. Common question types
        3. How to structure answers
        4. Tips for success

        Keep it concise and actionable.
    """).text

    final = search_results + "\n**πŸ’‘ How to Tackle These Interviews:**\n\n" + guidance
    return {"status": "success", "response": final}

# β€”β€”β€” Tool 3: Simulate Mock Interview β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# Enhanced user session management
user_sessions = {}

def simulate_mock_interview(query, user_id="default"):
    session_key = f"mock_{user_id}"
    if session_key not in user_sessions:
        user_sessions[session_key] = {
            "stage": "tech_stack",
            "tech_stack": "",
            "questions_asked": [],
            "answers_given": [],
            "current_question": "",
            "question_count": 0,
            "difficulty": "medium",  # Added difficulty level
            "feedback_history": []   # Added feedback tracking
        }
    session = user_sessions[session_key]
    model = genai.GenerativeModel('gemini-1.5-flash')

    # Tech stack collection stage
    if session["stage"] == "tech_stack":
        session["stage"] = "waiting_tech_stack"
        return {"status": "success", "response": (
            "Welcome to your mock interview! 🎯\n\n"
            "Please tell me about your tech stack (e.g., Python, React, multi-agent systems) "
            "or the role you're preparing for (e.g., software engineer, ML engineer)."
        )}

    elif session["stage"] == "waiting_tech_stack":
        session["tech_stack"] = query
        session["stage"] = "interviewing"
        difficulty_options = " (easy/medium/hard)"
        q = model.generate_content(f"""
            Generate a relevant interview question for tech stack: {query}
            Ensure it tests technical knowledge and problem-solving.
            Keep it concise and return only the question.
        """).text.strip()
        
        session.update({
            "current_question": q,
            "questions_asked": [q],
            "question_count": 1
        })
        
        return {"status": "success", "response": (
            f"Great! Based on your tech stack ({query}), let's start your mock interview.\n\n"
            f"**Question 1:** {q}\n"
            f"Set difficulty level{difficulty_options} or proceed. Type 'quit' to end and get your summary."
        )}

    elif session["stage"] == "interviewing":
        if query.lower().strip() in ["easy", "medium", "hard"]:
            session["difficulty"] = query.lower().strip()
            return {"status": "success", "response": (
                f"Difficulty set to {session['difficulty']}. Let's continue!\n\n"
                f"**Question {session['question_count']}:** {session['current_question']}\n\n"
                "Take your time to answer. Type 'quit' to end and get your summary."
            )}

        if query.lower().strip() == "quit":
            return end_mock_interview(session_key)

        # Store answer and provide feedback
        session["answers_given"].append(query)
        feedback = model.generate_content(f"""
            Question: {session['current_question']}
            Answer: {query}
            Tech Stack: {session['tech_stack']}
            Difficulty: {session['difficulty']}

            Provide concise, constructive feedback:
            - What went well
            - Areas to improve
            - Missing points or better approach
            - Suggested follow-up topic
        """).text.strip()
        session["feedback_history"].append(feedback)

        # Generate next question with context
        next_q = model.generate_content(f"""
            Tech stack: {session['tech_stack']}
            Difficulty: {session['difficulty']}
            Previous questions: {session['questions_asked']}
            Follow-up topic suggestion: {feedback.split('\n')[-1] if feedback else ''}

            Generate a new, relevant interview question unseen before.
            Ensure it aligns with the tech stack and difficulty.
            Return only the question.
        """).text.strip()

        session["questions_asked"].append(next_q)
        session["current_question"] = next_q
        session["question_count"] += 1

        return {"status": "success", "response": (
            f"**Feedback on your previous answer:**\n{feedback}\n\n"
            f"**Question {session['question_count']}:** {next_q}\n\n"
            "Type 'quit' to end the interview and get your summary, or set a new difficulty (easy/medium/hard)."
        )}

def end_mock_interview(session_key):
    session = user_sessions[session_key]
    model = genai.GenerativeModel('gemini-1.5-flash')

    summary = model.generate_content(f"""
        Mock Interview Summary:
        Tech Stack: {session['tech_stack']}
        Difficulty: {session['difficulty']}
        Questions Asked: {session['questions_asked']}
        Answers Given: {session['answers_given']}
        Feedback History: {session['feedback_history']}

        Provide a concise overall assessment:
        - Strengths
        - Areas for improvement
        - Key recommendations
        - Common mistakes to avoid
    """).text.strip()

    del user_sessions[session_key]

    return {"status": "success", "response": (
        "🎯 **Mock Interview Complete!**\n\n"
        f"**Interview Summary:**\n"
        f"- Tech Stack: {session['tech_stack']}\n"
        f"- Difficulty: {session['difficulty']}\n"
        f"- Questions Asked: {len(session['questions_asked'])}\n\n"
        "**Overall Assessment:**\n" + summary + "\n\n"
        "Great jobβ€”use this feedback to level up! πŸ’ͺ"
    )}

# β€”β€”β€” Main Agent Class β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
class InterviewPrepAgent:
    def __init__(self):
        self.model = genai.GenerativeModel('gemini-1.5-flash')
        self.tools = {
            "get_daily_coding_question": get_daily_coding_question,
            "fetch_interview_questions": fetch_interview_questions,
            "simulate_mock_interview": simulate_mock_interview
        }

    def classify_query(self, query):
        prompt = f"""
        Analyze this user query and determine which tool to use:

        Query: "{query}"

        Tools:
        1. get_daily_coding_question – for coding problems, leetcode, daily challenges
        2. fetch_interview_questions – for topic-specific interview question resources
        3. simulate_mock_interview – for mock interview practice or behavioral interviews

        Rules:
        - If query mentions 'mock', 'interview', 'simulate', or 'practice', choose simulate_mock_interview
        - If query mentions 'coding', 'leetcode', 'daily', 'problem', choose get_daily_coding_question
        - If query asks for interview questions on a specific technology (like 'Python interview questions'), choose fetch_interview_questions
        - If unclear, default to simulate_mock_interview

        Respond with JSON
        """
        resp = self.model.generate_content(prompt).text.strip()
        if resp.startswith("```json"):
            resp = resp.replace("```json", "").replace("```", "").strip()
        j = json.loads(resp)
        return j.get("tool"), j.get("args", {})

    def process_query(self, query, user_id="default"):
        tool, args = self.classify_query(query)
        if tool not in self.tools:
            return {"text": "Sorry, I didn't get that. Ask for coding practice, interview questions, or mock interview!"}

        if tool == "simulate_mock_interview":
            result = self.tools[tool](args.get("query", query), user_id)
        else:
            result = self.tools[tool](args.get("query", query))
        return {"text": result["response"]}

# β€”β€”β€” Gradio Interface β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
agent = InterviewPrepAgent()

def chat_interface(message, history):
    resp = agent.process_query(message, user_id="gradio_user")
    return resp.get("text", "Something went wrong, try again.")

def create_examples():
    return [
        ["Give me daily coding questions"],
        ["Start a mock interview"],
        ["Python interview questions"],
        ["React interview questions"],
        ["Show me problem 1"],
        ["Data structures interview questions"],
    ]

with gr.Blocks(title="Interview Prep Assistant", theme=gr.themes.Soft()) as interface:
    gr.Markdown("# 🎯 Interview Prep Assistant\nYour AI-powered interview practice companion!")
    chatbot = gr.ChatInterface(
        fn=chat_interface,
        examples=create_examples(),
        chatbot=gr.Chatbot(height=500, show_label=False, container=True, type="messages"),
        textbox=gr.Textbox(placeholder="Type your message here...")
    )
    gr.Markdown(f"\n---\n**System Status:**\n- βœ… Google API Configured\n- βœ… {len(LEETCODE_DATA)} LeetCode Problems Loaded\n- {'βœ…' if TAVILY_API_KEY else '❌'} Tavily Search Available")

if __name__ == "__main__":
    interface.launch(server_port=8000, share=True, show_error=True, quiet=False)