n0v33n
Updated app.py and gradioapp.py
ddbcbee
import json
import os
import re
import pandas as pd
import random
from typing import Dict, Optional, Any
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from dotenv import load_dotenv
from langchain_tavily import TavilySearch
import google.generativeai as genai
# Load environment variables
load_dotenv()
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Configure Google AI
genai.configure(api_key=GOOGLE_API_KEY)
# Load LeetCode data
OUTPUT_FILE = "leetcode_downloaded.xlsx"
try:
LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
print(f"Loaded {len(LEETCODE_DATA)} LeetCode problems from local file.")
except FileNotFoundError:
print("Warning: LeetCode data file not found. Some features may not work.")
LEETCODE_DATA = pd.DataFrame()
# User sessions for mock interviews
user_sessions = {}
# β€”β€”β€” Pydantic Models β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
class ChatRequest(BaseModel):
user_id: str = "default"
session_id: str = "default"
message: str
class ChatResponse(BaseModel):
status: str
response: str
session_id: str
class HealthResponse(BaseModel):
status: str
google_api_configured: bool
leetcode_problems_loaded: int
tavily_search_available: bool
# β€”β€”β€” Utility Functions β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
def preprocess_query(query: str) -> str:
"""Preprocess user query for better understanding"""
return query.strip()
# β€”β€”β€” Tool 1: Get Daily Coding Question β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
def get_daily_coding_question(query=""):
"""Get 3 random coding questions (one from each difficulty level)"""
if LEETCODE_DATA.empty:
return {"status": "error", "response": "LeetCode data not available. Please check the data file."}
response = "Here are your coding challenges for today:\n\n"
problem_match = re.search(r'problem[\s_]*(\d+)', query, re.IGNORECASE)
if problem_match:
problem_no = int(problem_match.group(1))
specific_problem = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == problem_no]
if not specific_problem.empty:
p = specific_problem.iloc[0]
response = f"**Problem {p['problem_no']}: {p['problem_statement']}**\n"
response += f"**Difficulty**: {p['problem_level']}\n"
response += f"**Link**: {p['problem_link']}\n\n"
response += "Good luck with this problem!"
return {"status": "success", "response": response}
else:
return {"status": "error", "response": "Problem not found. Try a different number!"}
easy = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Easy']
medium = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Medium']
hard = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Hard']
for label, df in [("🟒 Easy", easy), ("🟑 Medium", medium), ("πŸ”΄ Hard", hard)]:
if not df.empty:
q = df.sample(1).iloc[0]
response += f"**{label} Challenge**\n"
response += f"Problem {q['problem_no']}: {q['problem_statement']}\n"
response += f"Link: {q['problem_link']}\n\n"
response += "Choose one that matches your skill level and start coding!"
return {"status": "success", "response": response}
# β€”β€”β€” Tool 2: Fetch Interview Questions β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
def fetch_interview_questions(query):
if not TAVILY_API_KEY:
return {"status": "error", "response": "Tavily API key not configured."}
try:
tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=3)
search_response = tavily.invoke(f"{query} interview questions")
# Extract the results list from the response dictionary
results = search_response.get("results", []) if isinstance(search_response, dict) else search_response
if not results:
return {"status": "success", "response": f"No results found for '{query}' interview questions."}
search_results = f"Here are the top 3 resources for {query} interview questions:\n\n"
for i, res in enumerate(results[:3], 1):
t = res.get('title', 'No title')
u = res.get('url', 'No URL')
c = res.get('content', '')
snippet = c[:200] + '...' if len(c) > 200 else c
search_results += f"**{i}. {t}**\nURL: {u}\nPreview: {snippet}\n\n"
model = genai.GenerativeModel('gemini-1.5-flash')
guidance = model.generate_content(f"""
Based on the topic '{query}', provide practical advice on how to prepare for and tackle interview questions in this area.
Include:
1. Key concepts to focus on
2. Common question types
3. How to structure answers
4. Tips for success
Keep it concise and actionable.
""").text
final = search_results + "\n**πŸ’‘ How to Tackle These Interviews:**\n\n" + guidance
return {"status": "success", "response": final}
except Exception as e:
return {"status": "error", "response": f"Error fetching interview questions: {str(e)}"}
# β€”β€”β€” Tool 3: Simulate Mock Interview β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
def simulate_mock_interview(query, user_id="default", session_id="default"):
session_key = f"mock_{user_id}_{session_id}"
if session_key not in user_sessions:
user_sessions[session_key] = {
"stage": "tech_stack",
"tech_stack": "",
"questions_asked": [],
"answers_given": [],
"current_question": "",
"question_count": 0,
"difficulty": "medium",
"feedback_history": []
}
session = user_sessions[session_key]
try:
model = genai.GenerativeModel('gemini-1.5-flash')
# Tech stack collection stage
if session["stage"] == "tech_stack":
session["stage"] = "waiting_tech_stack"
return {"status": "success", "response": (
"Welcome to your mock interview! 🎯\n\n"
"Please tell me about your tech stack (e.g., Python, React, multi-agent systems) "
"or the role you're preparing for (e.g., software engineer, ML engineer)."
)}
elif session["stage"] == "waiting_tech_stack":
session["tech_stack"] = query
session["stage"] = "interviewing"
difficulty_options = " (easy/medium/hard)"
q = model.generate_content(f"""
Generate a relevant interview question for tech stack: {query}
Ensure it tests technical knowledge and problem-solving.
Keep it concise and return only the question.
""").text.strip()
session.update({
"current_question": q,
"questions_asked": [q],
"question_count": 1
})
return {"status": "success", "response": (
f"Great! Based on your tech stack ({query}), let's start your mock interview.\n\n"
f"**Question 1:** {q}\n"
f"Set difficulty level{difficulty_options} or proceed. Type 'quit' to end and get your summary."
)}
elif session["stage"] == "interviewing":
if query.lower().strip() in ["easy", "medium", "hard"]:
session["difficulty"] = query.lower().strip()
return {"status": "success", "response": (
f"Difficulty set to {session['difficulty']}. Let's continue!\n\n"
f"**Question {session['question_count']}:** {session['current_question']}\n\n"
"Take your time to answer. Type 'quit' to end and get your summary."
)}
if query.lower().strip() == "quit":
return end_mock_interview(session_key)
# Store answer and provide feedback
session["answers_given"].append(query)
feedback = model.generate_content(f"""
Question: {session['current_question']}
Answer: {query}
Tech Stack: {session['tech_stack']}
Difficulty: {session['difficulty']}
Provide concise, constructive feedback:
- What went well
- Areas to improve
- Missing points or better approach
- Suggested follow-up topic
""").text.strip()
session["feedback_history"].append(feedback)
# Generate next question with context
next_q = model.generate_content(f"""
Tech stack: {session['tech_stack']}
Difficulty: {session['difficulty']}
Previous questions: {session['questions_asked']}
Follow-up topic suggestion: {feedback.split('\n')[-1] if feedback else ''}
Generate a new, relevant interview question unseen before.
Ensure it aligns with the tech stack and difficulty.
Return only the question.
""").text.strip()
session["questions_asked"].append(next_q)
session["current_question"] = next_q
session["question_count"] += 1
return {"status": "success", "response": (
f"**Feedback on your previous answer:**\n{feedback}\n\n"
f"**Question {session['question_count']}:** {next_q}\n\n"
"Type 'quit' to end the interview and get your summary, or set a new difficulty (easy/medium/hard)."
)}
except Exception as e:
return {"status": "error", "response": f"Error in mock interview: {str(e)}"}
def end_mock_interview(session_key):
session = user_sessions[session_key]
try:
model = genai.GenerativeModel('gemini-1.5-flash')
summary = model.generate_content(f"""
Mock Interview Summary:
Tech Stack: {session['tech_stack']}
Difficulty: {session['difficulty']}
Questions Asked: {session['questions_asked']}
Answers Given: {session['answers_given']}
Feedback History: {session['feedback_history']}
Provide a concise overall assessment:
- Strengths
- Areas for improvement
- Key recommendations
- Common mistakes to avoid
""").text.strip()
# Store session data before deletion for response
tech_stack = session['tech_stack']
difficulty = session['difficulty']
questions_count = len(session['questions_asked'])
del user_sessions[session_key]
return {"status": "success", "response": (
"🎯 **Mock Interview Complete!**\n\n"
f"**Interview Summary:**\n"
f"- Tech Stack: {tech_stack}\n"
f"- Difficulty: {difficulty}\n"
f"- Questions Asked: {questions_count}\n\n"
"**Overall Assessment:**\n" + summary + "\n\n"
"Great jobβ€”use this feedback to level up! πŸ’ͺ"
)}
except Exception as e:
return {"status": "error", "response": f"Error generating interview summary: {str(e)}"}
# β€”β€”β€” Main Agent Class β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
class InterviewPrepAgent:
def __init__(self):
if GOOGLE_API_KEY:
self.model = genai.GenerativeModel('gemini-1.5-flash')
else:
self.model = None
self.tools = {
"get_daily_coding_question": get_daily_coding_question,
"fetch_interview_questions": fetch_interview_questions,
"simulate_mock_interview": simulate_mock_interview
}
def classify_query(self, query):
if not self.model:
# Fallback classification without AI
query_lower = query.lower()
if any(keyword in query_lower for keyword in ['mock', 'interview', 'simulate', 'practice']):
return "simulate_mock_interview", {"query": query}
elif any(keyword in query_lower for keyword in ['coding', 'leetcode', 'daily', 'problem']):
return "get_daily_coding_question", {"query": query}
else:
return "fetch_interview_questions", {"query": query}
try:
prompt = f"""
Analyze this user query and determine which tool to use:
Query: "{query}"
Tools:
1. get_daily_coding_question – for coding problems, leetcode, daily challenges
2. fetch_interview_questions – for topic-specific interview question resources
3. simulate_mock_interview – for mock interview practice or behavioral interviews
Rules:
- If query mentions 'mock', 'interview', 'simulate', or 'practice', choose simulate_mock_interview
- If query mentions 'coding', 'leetcode', 'daily', 'problem', choose get_daily_coding_question
- If query asks for interview questions on a specific technology (like 'Python interview questions'), choose fetch_interview_questions
- If unclear, default to simulate_mock_interview
Respond with JSON: {{"tool": "tool_name", "args": {{"query": "query_text"}}}}
"""
resp = self.model.generate_content(prompt).text.strip()
if resp.startswith("```json"):
resp = resp.replace("```json", "").replace("```", "").strip()
j = json.loads(resp)
return j.get("tool"), j.get("args", {})
except Exception as e:
# Fallback to simple classification
return "simulate_mock_interview", {"query": query}
def process_query(self, query, user_id="default", session_id="default"):
tool, args = self.classify_query(query)
if tool not in self.tools:
return {"status": "error", "response": "Sorry, I didn't get that. Ask for coding practice, interview questions, or mock interview!"}
if tool == "simulate_mock_interview":
result = self.tools[tool](args.get("query", query), user_id, session_id)
else:
result = self.tools[tool](args.get("query", query))
return result.get("response", "Something went wrong, try again.")
# β€”β€”β€” FastAPI Application β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
app = FastAPI(title="Interview Prep API", version="2.0.0", description="AI-powered interview practice companion")
# Initialize the agent
agent = InterviewPrepAgent()
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""
Process a chat message and return a response
"""
try:
query = preprocess_query(request.message)
response = agent.process_query(query, request.user_id, request.session_id)
return ChatResponse(
status="success",
response=response,
session_id=request.session_id
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}")
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""
Health check endpoint
"""
return HealthResponse(
status="healthy",
google_api_configured=bool(GOOGLE_API_KEY),
leetcode_problems_loaded=len(LEETCODE_DATA),
tavily_search_available=bool(TAVILY_API_KEY)
)
@app.get("/")
async def root():
"""
Root endpoint with API information
"""
return {
"message": "Interview Prep API v2.0.0",
"description": "AI-powered interview practice companion",
"endpoints": {
"/chat": "POST - Send chat messages",
"/health": "GET - Health check",
"/docs": "GET - API documentation",
"/examples": "GET - Example requests"
}
}
@app.get("/examples")
async def get_examples():
"""
Get example requests for the API
"""
return {
"examples": [
{
"description": "Get daily coding questions",
"request": {
"user_id": "user123",
"session_id": "session456",
"message": "Give me daily coding questions"
}
},
{
"description": "Start a mock interview",
"request": {
"user_id": "user123",
"session_id": "session456",
"message": "Start a mock interview"
}
},
{
"description": "Get Python interview questions",
"request": {
"user_id": "user123",
"session_id": "session456",
"message": "Python interview questions"
}
},
{
"description": "Get specific LeetCode problem",
"request": {
"user_id": "user123",
"session_id": "session456",
"message": "Show me problem 1"
}
}
]
}
@app.delete("/session/{user_id}/{session_id}")
async def clear_session(user_id: str, session_id: str):
"""
Clear a specific user session
"""
session_key = f"mock_{user_id}_{session_id}"
if session_key in user_sessions:
del user_sessions[session_key]
return {"message": f"Session {session_id} for user {user_id} cleared successfully"}
else:
raise HTTPException(status_code=404, detail="Session not found")
@app.get("/sessions/{user_id}")
async def get_user_sessions(user_id: str):
"""
Get all sessions for a specific user
"""
user_session_keys = [key for key in user_sessions.keys() if key.startswith(f"mock_{user_id}_")]
sessions = []
for key in user_session_keys:
session_id = key.split("_")[-1]
session_data = user_sessions[key]
sessions.append({
"session_id": session_id,
"stage": session_data.get("stage"),
"tech_stack": session_data.get("tech_stack"),
"question_count": session_data.get("question_count", 0),
"difficulty": session_data.get("difficulty")
})
return {"user_id": user_id, "sessions": sessions}
if __name__ == "__main__":
import uvicorn
print("Starting Interview Prep FastAPI server...")
print(f"Google API configured: {bool(GOOGLE_API_KEY)}")
print(f"LeetCode problems loaded: {len(LEETCODE_DATA)}")
print(f"Tavily search available: {bool(TAVILY_API_KEY)}")
uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)