Spaces:
Sleeping
Sleeping
File size: 9,869 Bytes
d6a3aa4 9c89d97 d6a3aa4 1fb8db4 d6a3aa4 9c89d97 707c36e 1fb8db4 707c36e 9c89d97 707c36e 1fb8db4 707c36e 9c89d97 1fb8db4 707c36e 9c89d97 1fb8db4 9c89d97 1fb8db4 707c36e 1fb8db4 9c89d97 1fb8db4 707c36e 1fb8db4 707c36e 1fb8db4 707c36e 1fb8db4 707c36e 9c89d97 1fb8db4 707c36e 1fb8db4 9c89d97 1fb8db4 9c89d97 1fb8db4 9c89d97 1fb8db4 707c36e 1fb8db4 707c36e 9c89d97 1fb8db4 707c36e 1fb8db4 707c36e 1fb8db4 707c36e 1fb8db4 9c89d97 1fb8db4 9c89d97 1fb8db4 9c89d97 1fb8db4 707c36e 1fb8db4 9c89d97 1fb8db4 9c89d97 1fb8db4 707c36e 1fb8db4 d6a3aa4 1fb8db4 d6a3aa4 1fb8db4 d6a3aa4 1fb8db4 d6a3aa4 1fb8db4 d6a3aa4 1fb8db4 636ca5f 1fb8db4 9c89d97 1fb8db4 636ca5f 1fb8db4 9c89d97 1fb8db4 d6a3aa4 1fb8db4 d6a3aa4 1fb8db4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
import time
import gradio as gr
import requests
import json
import re
import google.generativeai as genai
from openai import OpenAI
from typing import List, Dict, Optional
class CognitiveArchitecture:
def __init__(self):
self.api_keys = {
"GEMINI": os.environ.get("GEMINI_API_KEY"),
"MISTRAL": os.environ.get("MISTRAL_API_KEY"),
"OPENROUTER": os.environ.get("OPENROUTER_API_KEY"),
"AZURE": os.environ.get("AZURE_API_KEY")
}
self.validate_keys()
genai.configure(api_key=self.api_keys["GEMINI"])
self.gemini_model = genai.GenerativeModel("gemini-2.0-pro-exp-02-05")
self.gpt4o_client = OpenAI(
base_url="https://models.inference.ai.azure.com",
api_key=self.api_keys["AZURE"]
)
self.model_config = {
"decomposition": ["gemini-2.0-pro-exp-02-05", "mistral-large-latest"],
"analysis": ["gpt-4o"],
"critique": ["gpt-4o", "meta-llama/llama-3.3-70b-instruct:free"]
}
self.headers = {
"mistral": {"Authorization": f"Bearer {self.api_keys['MISTRAL']}"},
"openrouter": {"Authorization": f"Bearer {self.api_keys['OPENROUTER']}"}
}
def validate_keys(self):
for service, key in self.api_keys.items():
if not key:
raise ValueError(f"Missing API key: {service}")
def safe_json_parse(self, text: str) -> dict:
"""Robust JSON parsing with multiple fallbacks"""
try:
return json.loads(text)
except json.JSONDecodeError:
try:
# Try to extract JSON from text
json_str = re.search(r'\{.*\}', text, re.DOTALL)
if json_str:
return json.loads(json_str.group())
# Fallback to key-value parsing
return self.parse_kv_text(text)
except Exception as e:
return {"error": f"JSON parsing failed: {str(e)}", "raw_response": text}
def parse_kv_text(self, text: str) -> dict:
"""Fallback key-value parser"""
parsed = {}
current_key = None
lines = text.split('\n')
for line in lines:
if ':' in line:
key, value = line.split(':', 1)
parsed[key.strip()] = value.strip()
current_key = key.strip()
elif current_key:
parsed[current_key] += " " + line.strip()
return parsed
def call_model(self, model: str, prompt: str) -> dict:
"""Robust model caller with error handling"""
try:
if "gemini" in model:
response = self.gemini_model.generate_content(prompt)
return {"success": True, "content": response.text}
if "mistral" in model:
return self.call_mistral(model, prompt)
if "gpt-4o" in model:
return self.call_azure_gpt4o(prompt)
return self.call_openrouter(model, prompt)
except Exception as e:
return {"success": False, "error": str(e)}
def call_mistral(self, model: str, prompt: str) -> dict:
"""Mistral API caller"""
try:
response = requests.post(
"https://api.mistral.ai/v1/chat/completions",
headers=self.headers["mistral"],
json={
"model": model,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 3000
},
timeout=30
)
if response.status_code == 200:
return {"success": True, "content": response.json()['choices'][0]['message']['content']}
return {"success": False, "error": f"API Error {response.status_code}"}
except Exception as e:
return {"success": False, "error": str(e)}
def call_azure_gpt4o(self, prompt: str) -> dict:
"""Azure GPT-4o caller"""
try:
response = self.gpt4o_client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=2000
)
return {"success": True, "content": response.choices[0].message.content}
except Exception as e:
return {"success": False, "error": str(e)}
def call_openrouter(self, model: str, prompt: str) -> dict:
"""OpenRouter caller"""
try:
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers=self.headers["openrouter"],
json={
"model": model,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 3000
},
timeout=30
)
if response.status_code == 200:
return {"success": True, "content": response.json()['choices'][0]['message']['content']}
return {"success": False, "error": f"API Error {response.status_code}"}
except Exception as e:
return {"success": False, "error": str(e)}
def analyze_query(self, query: str) -> dict:
"""Full analysis workflow with error resilience"""
try:
# Step 1: Multi-model decomposition
decompositions = {}
for model in self.model_config["decomposition"]:
result = self.call_model(model, f"Decompose this query: {query}")
if result["success"]:
decompositions[model] = self.safe_json_parse(result["content"])
# Step 2: GPT-4 analysis
analysis_prompt = f"""Analyze this query based on decompositions:
{json.dumps(decompositions, indent=2)}
Query: {query}
Provide detailed analysis in JSON format."""
analysis = self.call_model("gpt-4o", analysis_prompt)
if not analysis["success"]:
return {"error": "Analysis failed", "details": analysis["error"]}
parsed_analysis = self.safe_json_parse(analysis["content"])
# Step 3: Cross-model critique
critiques = {}
for model in self.model_config["critique"]:
critique_prompt = f"""Critique this analysis:
{json.dumps(parsed_analysis, indent=2)}
Provide structured feedback in JSON format."""
result = self.call_model(model, critique_prompt)
if result["success"]:
critiques[model] = self.safe_json_parse(result["content"])
# Step 4: Final synthesis
synthesis_prompt = f"""Synthesize final response considering:
Analysis: {json.dumps(parsed_analysis, indent=2)}
Critiques: {json.dumps(critiques, indent=2)}
Provide comprehensive response with confidence score."""
synthesis = self.call_model("gemini-2.0-pro-exp-02-05", synthesis_prompt)
return {
"decompositions": decompositions,
"analysis": parsed_analysis,
"critiques": critiques,
"synthesis": synthesis["content"] if synthesis["success"] else "Synthesis failed",
"success": True
}
except Exception as e:
return {"success": False, "error": str(e)}
def create_interface():
try:
analyzer = CognitiveArchitecture()
except ValueError as e:
return gr.Blocks().launch(error_message=str(e))
with gr.Blocks(title="AI Analysis Suite", theme=gr.themes.Soft(), css="""
.analysis-section { margin: 15px; padding: 15px; border: 1px solid #eee; border-radius: 8px; }
pre { white-space: pre-wrap; background: #f8f9fa; padding: 10px; }
.error { color: #dc3545; background: #ffeef0; padding: 10px; border-radius: 5px; }
""") as demo:
gr.Markdown("# 🧠 Advanced AI Analysis System")
with gr.Row():
input_box = gr.Textbox(label="Input Query", placeholder="Enter your query...", lines=3)
submit_btn = gr.Button("Analyze", variant="primary")
output_area = gr.Markdown()
debug_info = gr.JSON(label="Analysis Details")
def process_query(query):
start_time = time.time()
result = analyzer.analyze_query(query)
duration = time.time() - start_time
if not result.get("success"):
return f"## ❌ Analysis Error\n{result.get('error', 'Unknown error')}", {}
formatted_output = f"""
## Analysis Result
{result.get('synthesis', 'No synthesis available')}
**Processing Time**: {duration:.2f}s
**Models Used**: {len(result['decompositions'])} decomposition, {len(result['critiques'])} critique
"""
return formatted_output, {
"decompositions": result["decompositions"],
"analysis": result["analysis"],
"critiques": result["critiques"]
}
submit_btn.click(
process_query,
inputs=input_box,
outputs=[output_area, debug_info]
)
return demo
if __name__ == "__main__":
create_interface().launch(server_port=7860) |