Spaces:
Sleeping
Sleeping
File size: 13,198 Bytes
d6a3aa4 636ca5f 707c36e 636ca5f 707c36e 636ca5f d6a3aa4 636ca5f 707c36e d6a3aa4 636ca5f d6a3aa4 636ca5f d6a3aa4 636ca5f d6a3aa4 636ca5f d6a3aa4 636ca5f d6a3aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import os
import time
import gradio as gr
import requests
import json
import numpy as np
import google.generativeai as genai
from openai import OpenAI
from typing import List, Dict, Tuple
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
# Animation CSS and HTML
LOADING_ANIMATION = """
<style>
.thinking-animation {
display: flex;
justify-content: center;
align-items: center;
height: 100px;
flex-direction: column;
}
.dot-flashing {
position: relative;
width: 10px;
height: 10px;
border-radius: 5px;
background-color: #4CAF50;
color: #4CAF50;
animation: dotFlashing 1s infinite linear alternate;
animation-delay: .5s;
}
.dot-flashing::before, .dot-flashing::after {
content: '';
display: inline-block;
position: absolute;
top: 0;
}
.dot-flashing::before {
left: -15px;
width: 10px;
height: 10px;
border-radius: 5px;
background-color: #4CAF50;
color: #4CAF50;
animation: dotFlashing 1s infinite alternate;
animation-delay: 0s;
}
.dot-flashing::after {
left: 15px;
width: 10px;
height: 10px;
border-radius: 5px;
background-color: #4CAF50;
color: #4CAF50;
animation: dotFlashing 1s infinite alternate;
animation-delay: 1s;
}
@keyframes dotFlashing {
0% { background-color: #4CAF50; }
50%, 100% { background-color: rgba(76, 175, 80, 0.2); }
}
.thinking-text {
text-align: center;
margin-top: 20px;
font-weight: bold;
color: #4CAF50;
animation: textFade 2s infinite;
}
@keyframes textFade {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
</style>
<div class="thinking-animation">
<div class="dot-flashing"></div>
<div class="thinking-text">AGI Thinking...</div>
</div>
"""
class AGICognitiveSystem:
def __init__(self):
self.api_keys = {
"GEMINI": os.environ.get("GEMINI_API_KEY"),
"MISTRAL": os.environ.get("MISTRAL_API_KEY"),
"OPENROUTER": os.environ.get("OPENROUTER_API_KEY"),
"AZURE": os.environ.get("AZURE_API_KEY")
}
self.validate_keys()
# Initialize models and cognitive components
self.init_models()
self.init_cognitive_modules()
self.init_knowledge_graph()
# Initialize sentence transformer for semantic analysis
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
# Cognitive configuration
self.cognitive_config = {
"depth": 5, # Levels of recursive reasoning
"temperature_strategy": "adaptive",
"confidence_threshold": 0.85,
"max_retries": 3,
"metacognition_interval": 2
}
self.thought_history = []
self.cognitive_metrics = {
"processing_time": [],
"confidence_scores": [],
"error_rates": []
}
def validate_keys(self):
for key, value in self.api_keys.items():
if not value:
raise ValueError(f"Missing API key: {key}")
def init_models(self):
"""Initialize all AI models with specialized roles"""
# Google Gemini
genai.configure(api_key=self.api_keys["GEMINI"])
self.gemini = genai.GenerativeModel(
"gemini-2.0-pro-exp-02-05",
generation_config={"temperature": 0.5, "max_output_tokens": 8192}
)
# Azure GPT-4o
self.gpt4o = OpenAI(
base_url="https://models.inference.ai.azure.com",
api_key=self.api_keys["AZURE"]
)
# Model registry with specialized roles
self.model_registry = {
"intuition": "mistral-large-latest",
"analysis": "gpt-4o",
"critique": "meta-llama/llama-3.3-70b-instruct:free",
"creativity": "gemini-2.0-pro-exp-02-05",
"validation": "deepseek/deepseek-chat:free",
"metacognition": "gpt-4o",
"emotional_intelligence": "qwen/qwen-vl-plus:free"
}
def init_cognitive_modules(self):
"""Initialize specialized cognitive processors"""
self.modules = {
"working_memory": [],
"long_term_memory": [],
"emotional_context": {"valence": 0.5, "arousal": 0.5},
"error_correction": [],
"metacognition_stack": []
}
def init_knowledge_graph(self):
"""Initialize semantic knowledge network"""
self.knowledge_graph = {
"nodes": [],
"edges": [],
"embeddings": np.array([])
}
def cognitive_flow(self, query: str) -> Tuple[str, dict]:
"""Multi-layered cognitive processing pipeline"""
try:
# Stage 1: Perception & Contextualization
context = self.perceive_context(query)
# Stage 2: Core Reasoning Process
solutions = self.recursive_reasoning(query, context)
# Stage 3: Emotional Alignment
emotionally_aligned = self.apply_emotional_intelligence(solutions)
# Stage 4: Metacognitive Review
validated = self.metacognitive_review(emotionally_aligned)
# Stage 5: Knowledge Integration
self.update_knowledge_graph(query, validated)
return validated, {
"reasoning_steps": self.thought_history[-5:],
"confidence": self.calculate_confidence(validated),
"semantic_coherence": self.analyze_coherence(validated)
}
except Exception as e:
self.handle_error(e)
return "Cognitive processing failed", {}
def recursive_reasoning(self, query: str, context: dict, depth: int = 0) -> List[dict]:
"""Deep recursive reasoning with backtracking"""
if depth >= self.cognitive_config["depth"]:
return []
# Generate initial hypotheses
hypotheses = self.generate_hypotheses(query, context)
# Evaluate hypotheses
evaluated = []
for hypothesis in hypotheses:
analysis = self.analyze_hypothesis(hypothesis, context)
critique = self.critique_analysis(analysis)
if self.evaluate_critique(critique):
refined = self.refine_hypothesis(hypothesis, critique)
evaluated.append({
"hypothesis": refined,
"confidence": self.calculate_confidence(refined),
"depth": depth
})
# Recursive deepening
evaluated += self.recursive_reasoning(refined, context, depth+1)
return self.rank_solutions(evaluated)
def generate_hypotheses(self, query: str, context: dict) -> List[str]:
"""Generate potential solutions using multiple models"""
hypotheses = []
# Intuitive generation
hypotheses.append(self.call_model(
"intuition",
f"Generate intuitive hypothesis for: {query}",
context
))
# Analytical generation
hypotheses.append(self.call_model(
"analysis",
f"Generate analytical solution for: {query}",
context
))
# Creative generation
hypotheses.append(self.call_model(
"creativity",
f"Generate creative approach for: {query}",
context
))
return [h for h in hypotheses if h]
def call_model(self, module: str, prompt: str, context: dict) -> str:
"""Advanced model caller with adaptive temperature and retry"""
temperature = self.calculate_temperature(context)
retries = 0
while retries < self.cognitive_config["max_retries"]:
try:
if module in ["intuition", "metacognition"]:
return self._call_mistral(prompt, temperature)
elif module == "analysis":
return self._call_gpt4o(prompt, temperature)
elif module == "creativity":
return self.gemini.generate_content(prompt).text
elif module == "emotional_intelligence":
return self._call_qwen(prompt)
elif module == "validation":
return self._call_deepseek(prompt)
except Exception as e:
retries += 1
self.handle_error(e)
return ""
def _call_mistral(self, prompt: str, temperature: float) -> str:
"""Call Mistral API"""
headers = {
"Authorization": f"Bearer {self.api_keys['MISTRAL']}",
"Content-Type": "application/json"
}
payload = {
"model": self.model_registry["intuition"],
"messages": [{"role": "user", "content": prompt}],
"temperature": temperature,
"max_tokens": 2000
}
response = requests.post(
"https://api.mistral.ai/v1/chat/completions",
headers=headers,
json=payload
)
return response.json()['choices'][0]['message']['content']
def _call_gpt4o(self, prompt: str, temperature: float) -> str:
"""Call GPT-4o via Azure"""
try:
response = self.gpt4o.chat.completions.create(
model=self.model_registry["analysis"],
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
max_tokens=2000
)
return response.choices[0].message.content
except Exception as e:
raise RuntimeError(f"GPT-4o Error: {str(e)}")
def calculate_confidence(self, response: str) -> float:
"""Calculate semantic confidence score"""
query_embed = self.sentence_model.encode(response)
knowledge_embeds = self.knowledge_graph["embeddings"]
if knowledge_embeds.size == 0:
return 0.5 # Neutral confidence
similarities = cosine_similarity([query_embed], knowledge_embeds)
return np.max(similarities)
def update_knowledge_graph(self, query: str, response: str):
"""Dynamic knowledge integration"""
embedding = self.sentence_model.encode(response)
if self.knowledge_graph["embeddings"].size == 0:
self.knowledge_graph["embeddings"] = np.array([embedding])
else:
self.knowledge_graph["embeddings"] = np.vstack(
[self.knowledge_graph["embeddings"], embedding]
)
self.knowledge_graph["nodes"].append({
"id": len(self.knowledge_graph["nodes"]),
"content": response,
"embedding": embedding.tolist()
})
def handle_error(self, error: Exception):
"""Error handling and recovery"""
self.cognitive_metrics["error_rates"].append(time.time())
print(f"System Error: {str(error)}")
def create_agi_interface():
try:
agi = AGICognitiveSystem()
except ValueError as e:
return gr.Blocks().launch(error_message=str(e))
with gr.Blocks(title="Advanced AGI System", theme=gr.themes.Soft(), css="""
.cognitive-node { padding: 15px; margin: 10px; border-radius: 8px; background: #f8f9fa; }
.confidence-meter { height: 10px; background: #eee; border-radius: 5px; margin: 10px 0; }
.confidence-fill { height: 100%; border-radius: 5px; background: #4CAF50; }
""") as demo:
gr.Markdown("# 🧠 Advanced AGI Cognitive System")
with gr.Row():
input_panel = gr.Textbox(label="Input Query", lines=3,
placeholder="Enter complex query...")
with gr.Accordion("Cognitive Controls", open=False):
depth = gr.Slider(1, 10, value=5, label="Reasoning Depth")
creativity = gr.Slider(0, 1, value=0.7, label="Creativity Level")
loading = gr.HTML(LOADING_ANIMATION, visible=False)
output_panel = gr.Markdown()
visualization = gr.HTML()
metrics = gr.DataFrame(headers=["Metric", "Value"])
def toggle_loading():
return gr.HTML(visible=True)
def process_query(query):
start_time = time.time()
result, metrics = agi.cognitive_flow(query)
return result, metrics
input_panel.submit(
fn=toggle_loading,
inputs=None,
outputs=loading,
queue=False
).then(
fn=process_query,
inputs=input_panel,
outputs=[output_panel, metrics],
).then(
lambda: gr.HTML(visible=False),
inputs=None,
outputs=loading,
queue=False
)
return demo
if __name__ == "__main__":
create_agi_interface().launch(server_port=7860) |