File size: 13,198 Bytes
d6a3aa4
 
 
 
 
 
 
 
 
 
 
 
636ca5f
 
 
 
 
 
 
 
707c36e
636ca5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707c36e
 
 
 
 
 
636ca5f
 
 
 
 
 
 
 
d6a3aa4
636ca5f
707c36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a3aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636ca5f
d6a3aa4
 
 
 
636ca5f
 
 
 
 
 
 
 
d6a3aa4
636ca5f
 
 
 
 
 
d6a3aa4
636ca5f
 
 
 
 
 
d6a3aa4
636ca5f
d6a3aa4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import time
import gradio as gr
import requests
import json
import numpy as np
import google.generativeai as genai
from openai import OpenAI
from typing import List, Dict, Tuple
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer

# Animation CSS and HTML
LOADING_ANIMATION = """
<style>
.thinking-animation {
    display: flex;
    justify-content: center;
    align-items: center;
    height: 100px;
    flex-direction: column;
}

.dot-flashing {
    position: relative;
    width: 10px;
    height: 10px;
    border-radius: 5px;
    background-color: #4CAF50;
    color: #4CAF50;
    animation: dotFlashing 1s infinite linear alternate;
    animation-delay: .5s;
}

.dot-flashing::before, .dot-flashing::after {
    content: '';
    display: inline-block;
    position: absolute;
    top: 0;
}

.dot-flashing::before {
    left: -15px;
    width: 10px;
    height: 10px;
    border-radius: 5px;
    background-color: #4CAF50;
    color: #4CAF50;
    animation: dotFlashing 1s infinite alternate;
    animation-delay: 0s;
}

.dot-flashing::after {
    left: 15px;
    width: 10px;
    height: 10px;
    border-radius: 5px;
    background-color: #4CAF50;
    color: #4CAF50;
    animation: dotFlashing 1s infinite alternate;
    animation-delay: 1s;
}

@keyframes dotFlashing {
    0% { background-color: #4CAF50; }
    50%, 100% { background-color: rgba(76, 175, 80, 0.2); }
}

.thinking-text {
    text-align: center;
    margin-top: 20px;
    font-weight: bold;
    color: #4CAF50;
    animation: textFade 2s infinite;
}

@keyframes textFade {
    0%, 100% { opacity: 1; }
    50% { opacity: 0.5; }
}
</style>

<div class="thinking-animation">
    <div class="dot-flashing"></div>
    <div class="thinking-text">AGI Thinking...</div>
</div>
"""

class AGICognitiveSystem:
    def __init__(self):
        self.api_keys = {
            "GEMINI": os.environ.get("GEMINI_API_KEY"),
            "MISTRAL": os.environ.get("MISTRAL_API_KEY"),
            "OPENROUTER": os.environ.get("OPENROUTER_API_KEY"),
            "AZURE": os.environ.get("AZURE_API_KEY")
        }
        self.validate_keys()
        
        # Initialize models and cognitive components
        self.init_models()
        self.init_cognitive_modules()
        self.init_knowledge_graph()
        
        # Initialize sentence transformer for semantic analysis
        self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
        
        # Cognitive configuration
        self.cognitive_config = {
            "depth": 5,  # Levels of recursive reasoning
            "temperature_strategy": "adaptive",
            "confidence_threshold": 0.85,
            "max_retries": 3,
            "metacognition_interval": 2
        }
        
        self.thought_history = []
        self.cognitive_metrics = {
            "processing_time": [],
            "confidence_scores": [],
            "error_rates": []
        }

    def validate_keys(self):
        for key, value in self.api_keys.items():
            if not value:
                raise ValueError(f"Missing API key: {key}")

    def init_models(self):
        """Initialize all AI models with specialized roles"""
        # Google Gemini
        genai.configure(api_key=self.api_keys["GEMINI"])
        self.gemini = genai.GenerativeModel(
            "gemini-2.0-pro-exp-02-05",
            generation_config={"temperature": 0.5, "max_output_tokens": 8192}
        )
        
        # Azure GPT-4o
        self.gpt4o = OpenAI(
            base_url="https://models.inference.ai.azure.com",
            api_key=self.api_keys["AZURE"]
        )
        
        # Model registry with specialized roles
        self.model_registry = {
            "intuition": "mistral-large-latest",
            "analysis": "gpt-4o",
            "critique": "meta-llama/llama-3.3-70b-instruct:free",
            "creativity": "gemini-2.0-pro-exp-02-05",
            "validation": "deepseek/deepseek-chat:free",
            "metacognition": "gpt-4o",
            "emotional_intelligence": "qwen/qwen-vl-plus:free"
        }

    def init_cognitive_modules(self):
        """Initialize specialized cognitive processors"""
        self.modules = {
            "working_memory": [],
            "long_term_memory": [],
            "emotional_context": {"valence": 0.5, "arousal": 0.5},
            "error_correction": [],
            "metacognition_stack": []
        }

    def init_knowledge_graph(self):
        """Initialize semantic knowledge network"""
        self.knowledge_graph = {
            "nodes": [],
            "edges": [],
            "embeddings": np.array([])
        }

    def cognitive_flow(self, query: str) -> Tuple[str, dict]:
        """Multi-layered cognitive processing pipeline"""
        try:
            # Stage 1: Perception & Contextualization
            context = self.perceive_context(query)
            
            # Stage 2: Core Reasoning Process
            solutions = self.recursive_reasoning(query, context)
            
            # Stage 3: Emotional Alignment
            emotionally_aligned = self.apply_emotional_intelligence(solutions)
            
            # Stage 4: Metacognitive Review
            validated = self.metacognitive_review(emotionally_aligned)
            
            # Stage 5: Knowledge Integration
            self.update_knowledge_graph(query, validated)
            
            return validated, {
                "reasoning_steps": self.thought_history[-5:],
                "confidence": self.calculate_confidence(validated),
                "semantic_coherence": self.analyze_coherence(validated)
            }
            
        except Exception as e:
            self.handle_error(e)
            return "Cognitive processing failed", {}

    def recursive_reasoning(self, query: str, context: dict, depth: int = 0) -> List[dict]:
        """Deep recursive reasoning with backtracking"""
        if depth >= self.cognitive_config["depth"]:
            return []

        # Generate initial hypotheses
        hypotheses = self.generate_hypotheses(query, context)
        
        # Evaluate hypotheses
        evaluated = []
        for hypothesis in hypotheses:
            analysis = self.analyze_hypothesis(hypothesis, context)
            critique = self.critique_analysis(analysis)
            
            if self.evaluate_critique(critique):
                refined = self.refine_hypothesis(hypothesis, critique)
                evaluated.append({
                    "hypothesis": refined,
                    "confidence": self.calculate_confidence(refined),
                    "depth": depth
                })
                # Recursive deepening
                evaluated += self.recursive_reasoning(refined, context, depth+1)
        
        return self.rank_solutions(evaluated)

    def generate_hypotheses(self, query: str, context: dict) -> List[str]:
        """Generate potential solutions using multiple models"""
        hypotheses = []
        
        # Intuitive generation
        hypotheses.append(self.call_model(
            "intuition",
            f"Generate intuitive hypothesis for: {query}",
            context
        ))
        
        # Analytical generation
        hypotheses.append(self.call_model(
            "analysis",
            f"Generate analytical solution for: {query}",
            context
        ))
        
        # Creative generation
        hypotheses.append(self.call_model(
            "creativity",
            f"Generate creative approach for: {query}",
            context
        ))
        
        return [h for h in hypotheses if h]

    def call_model(self, module: str, prompt: str, context: dict) -> str:
        """Advanced model caller with adaptive temperature and retry"""
        temperature = self.calculate_temperature(context)
        retries = 0
        
        while retries < self.cognitive_config["max_retries"]:
            try:
                if module in ["intuition", "metacognition"]:
                    return self._call_mistral(prompt, temperature)
                elif module == "analysis":
                    return self._call_gpt4o(prompt, temperature)
                elif module == "creativity":
                    return self.gemini.generate_content(prompt).text
                elif module == "emotional_intelligence":
                    return self._call_qwen(prompt)
                elif module == "validation":
                    return self._call_deepseek(prompt)
                
            except Exception as e:
                retries += 1
                self.handle_error(e)
        
        return ""

    def _call_mistral(self, prompt: str, temperature: float) -> str:
        """Call Mistral API"""
        headers = {
            "Authorization": f"Bearer {self.api_keys['MISTRAL']}",
            "Content-Type": "application/json"
        }
        
        payload = {
            "model": self.model_registry["intuition"],
            "messages": [{"role": "user", "content": prompt}],
            "temperature": temperature,
            "max_tokens": 2000
        }
        
        response = requests.post(
            "https://api.mistral.ai/v1/chat/completions",
            headers=headers,
            json=payload
        )
        
        return response.json()['choices'][0]['message']['content']

    def _call_gpt4o(self, prompt: str, temperature: float) -> str:
        """Call GPT-4o via Azure"""
        try:
            response = self.gpt4o.chat.completions.create(
                model=self.model_registry["analysis"],
                messages=[{"role": "user", "content": prompt}],
                temperature=temperature,
                max_tokens=2000
            )
            return response.choices[0].message.content
        except Exception as e:
            raise RuntimeError(f"GPT-4o Error: {str(e)}")

    def calculate_confidence(self, response: str) -> float:
        """Calculate semantic confidence score"""
        query_embed = self.sentence_model.encode(response)
        knowledge_embeds = self.knowledge_graph["embeddings"]
        
        if knowledge_embeds.size == 0:
            return 0.5  # Neutral confidence
        
        similarities = cosine_similarity([query_embed], knowledge_embeds)
        return np.max(similarities)

    def update_knowledge_graph(self, query: str, response: str):
        """Dynamic knowledge integration"""
        embedding = self.sentence_model.encode(response)
        
        if self.knowledge_graph["embeddings"].size == 0:
            self.knowledge_graph["embeddings"] = np.array([embedding])
        else:
            self.knowledge_graph["embeddings"] = np.vstack(
                [self.knowledge_graph["embeddings"], embedding]
            )
        
        self.knowledge_graph["nodes"].append({
            "id": len(self.knowledge_graph["nodes"]),
            "content": response,
            "embedding": embedding.tolist()
        })

    def handle_error(self, error: Exception):
        """Error handling and recovery"""
        self.cognitive_metrics["error_rates"].append(time.time())
        print(f"System Error: {str(error)}")

def create_agi_interface():
    try:
        agi = AGICognitiveSystem()
    except ValueError as e:
        return gr.Blocks().launch(error_message=str(e))
    
    with gr.Blocks(title="Advanced AGI System", theme=gr.themes.Soft(), css="""
        .cognitive-node { padding: 15px; margin: 10px; border-radius: 8px; background: #f8f9fa; }
        .confidence-meter { height: 10px; background: #eee; border-radius: 5px; margin: 10px 0; }
        .confidence-fill { height: 100%; border-radius: 5px; background: #4CAF50; }
        """) as demo:
        
        gr.Markdown("# 🧠 Advanced AGI Cognitive System")
        
        with gr.Row():
            input_panel = gr.Textbox(label="Input Query", lines=3, 
                                   placeholder="Enter complex query...")
            with gr.Accordion("Cognitive Controls", open=False):
                depth = gr.Slider(1, 10, value=5, label="Reasoning Depth")
                creativity = gr.Slider(0, 1, value=0.7, label="Creativity Level")
        
        loading = gr.HTML(LOADING_ANIMATION, visible=False)
        output_panel = gr.Markdown()
        visualization = gr.HTML()
        metrics = gr.DataFrame(headers=["Metric", "Value"])
        
        def toggle_loading():
            return gr.HTML(visible=True)
        
        def process_query(query):
            start_time = time.time()
            result, metrics = agi.cognitive_flow(query)
            return result, metrics
        
        input_panel.submit(
            fn=toggle_loading,
            inputs=None,
            outputs=loading,
            queue=False
        ).then(
            fn=process_query,
            inputs=input_panel,
            outputs=[output_panel, metrics],
        ).then(
            lambda: gr.HTML(visible=False),
            inputs=None,
            outputs=loading,
            queue=False
        )

    return demo

if __name__ == "__main__":
    create_agi_interface().launch(server_port=7860)