Spaces:
Sleeping
Sleeping
File size: 32,329 Bytes
d6a3aa4 9c89d97 23c1855 d6a3aa4 23c1855 d6a3aa4 9c89d97 23c1855 707c36e 6a66c52 707c36e 23c1855 707c36e 23c1855 707c36e 9c89d97 707c36e 23c1855 01ff908 23c1855 6a66c52 707c36e 9c89d97 23c1855 707c36e 23c1855 707c36e 9c89d97 23c1855 1fb8db4 23c1855 707c36e 23c1855 707c36e 23c1855 707c36e 6a66c52 23c1855 707c36e 23c1855 707c36e 23c1855 9c89d97 23c1855 707c36e 23c1855 9c89d97 23c1855 9c89d97 23c1855 9c89d97 23c1855 1fb8db4 23c1855 707c36e 23c1855 707c36e 23c1855 9c89d97 23c1855 1fb8db4 23c1855 9c89d97 23c1855 1fb8db4 23c1855 9c89d97 23c1855 707c36e 23c1855 9c89d97 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 1fb8db4 23c1855 9c89d97 23c1855 9c89d97 23c1855 707c36e 23c1855 d6a3aa4 23c1855 d6a3aa4 23c1855 d6a3aa4 23c1855 d6a3aa4 23c1855 636ca5f 23c1855 628ea63 23c1855 628ea63 636ca5f 23c1855 d6a3aa4 23c1855 d6a3aa4 23c1855 628ea63 23c1855 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
import os
import time
import gradio as gr
import requests
import json
import re
import asyncio
import google.generativeai as genai
from openai import OpenAI
from typing import List, Dict, Tuple, Any, Optional, Union
from dataclasses import dataclass, field
from concurrent.futures import ThreadPoolExecutor
@dataclass
class CognitiveStep:
name: str
description: str
content: str = ""
metadata: Dict[str, Any] = field(default_factory=dict)
execution_time: float = 0.0
class CognitiveArchitecture:
def __init__(self, debug_mode: bool = False):
self.debug_mode = debug_mode
self.api_keys = {
"GEMINI": os.environ.get("GEMINI_API_KEY"),
"MISTRAL": os.environ.get("MISTRAL_API_KEY"),
"OPENROUTER": os.environ.get("OPENROUTER_API_KEY"),
"AZURE": os.environ.get("AZURE_API_KEY")
}
self.validate_keys()
# Initialize all AI models
genai.configure(api_key=self.api_keys["GEMINI"])
self.gemini_model = genai.GenerativeModel(
"gemini-2.0-pro-exp-02-05",
generation_config={"temperature": 0.5, "max_output_tokens": 8192}
)
self.gpt4o_client = OpenAI(
base_url="https://models.inference.ai.azure.com",
api_key=self.api_keys["AZURE"]
)
self.models = {
"DeepSeek": "deepseek/deepseek-chat:free", # Updated to DeepSeek
"Qwen": "qwen/qwen-vl-plus:free",
"Llama": "meta-llama/llama-3.3-70b-instruct:free",
"Mistral": "mistral-large-latest",
"GPT4o": "gpt-4o"
}
self.headers = {
"OpenRouter": {
"Authorization": f"Bearer {self.api_keys['OPENROUTER']}",
"Content-Type": "application/json"
},
"Mistral": {
"Authorization": f"Bearer {self.api_keys['MISTRAL']}",
"Content-Type": "application/json",
"Accept": "application/json"
}
}
self.memory = []
self.thinking_steps = []
self.executor = ThreadPoolExecutor(max_workers=5)
def validate_keys(self):
missing_keys = [key for key, value in self.api_keys.items() if not value]
if missing_keys:
if self.debug_mode:
print(f"Warning: Missing API keys: {', '.join(missing_keys)}")
else:
raise ValueError(f"Missing API keys: {', '.join(missing_keys)}")
def log(self, message: str, level: str = "INFO"):
"""Enhanced logging with timestamps"""
if self.debug_mode:
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
print(f"[{timestamp}] [{level}] {message}")
async def call_model_async(self, model_role: str, prompt: str, context: List[Dict] = None) -> str:
"""Asynchronous model router with advanced error handling"""
self.log(f"Calling {model_role} model")
start_time = time.time()
try:
if model_role == "Gemini":
response = await asyncio.to_thread(
self.gemini_model.generate_content, prompt
)
result = response.text
elif model_role == "Mistral":
result = await asyncio.to_thread(
self._call_mistral, prompt, context
)
elif model_role == "GPT4o":
result = await asyncio.to_thread(
self._call_gpt4o, prompt, context
)
elif model_role == "DeepSeek":
result = await asyncio.to_thread(
self._call_deepseek, prompt, context # Updated to DeepSeek
)
# Handle OpenRouter models
else:
payload = {
"model": self.models.get(model_role, model_role),
"messages": context if context else [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 3096,
"top_p": 0.9
}
async with asyncio.timeout(30):
response = await asyncio.to_thread(
requests.post,
"https://openrouter.ai/api/v1/chat/completions",
headers=self.headers["OpenRouter"],
json=payload
)
if response.status_code == 200:
result = response.json()['choices'][0]['message']['content']
else:
result = f"API Error {response.status_code}: {response.text}"
execution_time = time.time() - start_time
self.log(f"{model_role} completed in {execution_time:.2f}s")
return result
except Exception as e:
self.log(f"Model Error ({model_role}): {str(e)}", "ERROR")
return f"Error with {model_role}: {str(e)}"
def call_model(self, model_role: str, prompt: str, context: List[Dict] = None) -> str:
"""Synchronous wrapper for legacy compatibility"""
return asyncio.run(self.call_model_async(model_role, prompt, context))
def _call_mistral(self, prompt: str, context: List[Dict] = None) -> str:
"""Direct Mistral API call with improved error handling"""
try:
payload = {
"model": self.models["Mistral"],
"messages": context if context else [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 4096,
"top_p": 0.9
}
response = requests.post(
"https://api.mistral.ai/v1/chat/completions",
headers=self.headers["Mistral"],
json=payload,
timeout=30
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
self.log(f"Mistral API error: {response.status_code} - {response.text}", "ERROR")
return f"API Error {response.status_code}"
except Exception as e:
self.log(f"Mistral API Error: {str(e)}", "ERROR")
return f"Error: {str(e)}"
def _call_gpt4o(self, prompt: str, context: List[Dict] = None) -> str:
"""Azure Inference API for GPT-4o with retry logic"""
max_retries = 2
retry_count = 0
while retry_count <= max_retries:
try:
messages = context if context else [
{"role": "system", "content": "You are an expert analyst with multi-step reasoning capabilities."},
{"role": "user", "content": prompt}
]
response = self.gpt4o_client.chat.completions.create(
model=self.models["GPT4o"],
messages=messages,
temperature=0.7,
top_p=0.95,
max_tokens=2000
)
return response.choices[0].message.content
except Exception as e:
retry_count += 1
if retry_count <= max_retries:
self.log(f"GPT-4o Error, retrying ({retry_count}/{max_retries}): {str(e)}", "WARNING")
time.sleep(2) # Backoff before retry
else:
self.log(f"GPT-4o Error after retries: {str(e)}", "ERROR")
return f"Error after {max_retries} retries: {str(e)}"
def _call_deepseek(self, prompt: str, context: List[Dict] = None) -> str:
"""DeepSeek API integration"""
try:
if context:
messages = [{"role": m["role"], "content": m["content"]} for m in context]
else:
messages = [{"role": "user", "content": prompt}]
payload = {
"model": self.models["DeepSeek"],
"messages": messages,
"max_tokens": 4000,
"temperature": 0.5
}
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers=self.headers["OpenRouter"],
json=payload,
timeout=45
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
self.log(f"DeepSeek API error: {response.status_code} - {response.text}", "ERROR")
return f"API Error {response.status_code}"
except Exception as e:
self.log(f"DeepSeek API Error: {str(e)}", "ERROR")
return f"Error: {str(e)}"
async def hierarchical_reasoning(self, query: str) -> Tuple[str, dict]:
"""Nine-stage AGI reasoning pipeline with concurrent model calling"""
self.thinking_steps = []
try:
# Stage 1: Conceptual Decomposition (Mistral)
decomp_start = time.time()
decomposition_prompt = f"""Decompose the following query into detailed components:
QUERY: "{query}"
Output format:
- Primary Intent: [What is the main goal]
- Implicit Assumptions: [List all unstated assumptions]
- Required Knowledge Domains: [Specific domains needed to answer]
- Potential Biases: [Cognitive biases that might affect reasoning]
- Key Constraints: [Limitations or boundaries]
- Sub-Questions: [List of component questions needed to fully address]
"""
decomposition = await self.call_model_async("Mistral", decomposition_prompt)
decomp_time = time.time() - decomp_start
self.thinking_steps.append(CognitiveStep(
name="Conceptual Decomposition",
description="Breaking down the query into its foundational components",
content=decomposition,
execution_time=decomp_time
))
# Stage 2: Parallel Deep Analysis (Multiple models concurrently)
analysis_tasks = [
self.call_model_async(
"GPT4o",
f"""Analyze this query using first principles thinking:
QUERY: {query}
DECOMPOSITION: {decomposition}
Include multiple angles of analysis, potential solution paths, and identify knowledge gaps."""
),
self.call_model_async(
"DeepSeek", # Updated to DeepSeek
f"""Generate a systematic analysis framework for addressing:
"{query}"
Focus on:
1. Deep structure of the problem
2. Alternative perspectives
3. Root causes and implications
4. Knowledge requirements
"""
),
self.call_model_async(
"Mistral",
f"""Create a comprehensive concept map for the query:
"{query}"
Map out:
- Core concepts
- Their relationships
- Dependencies
- Decision points
- Critical factors
"""
)
]
analysis_start = time.time()
analysis_results = await asyncio.gather(*analysis_tasks)
analysis_time = time.time() - analysis_start
# Combine the analyses with attribution
combined_analysis = f"""
## GPT-4o Analysis
{analysis_results[0]}
## DeepSeek Analysis
{analysis_results[1]}
## Mistral Concept Map
{analysis_results[2]}
"""
self.thinking_steps.append(CognitiveStep(
name="Multi-Model Deep Analysis",
description="Parallel processing across different reasoning systems",
content=combined_analysis,
execution_time=analysis_time
))
# Stage 3: Contextual Grounding (Qwen)
context_start = time.time()
context = await self.call_model_async(
"Qwen",
f"""Generate comprehensive context for addressing this query:
"{query}"
Include:
- Relevant background information
- Historical context
- Current state of the art
- Common misconceptions
- Established frameworks
- Similar problems and their solutions
"""
)
context_time = time.time() - context_start
self.thinking_steps.append(CognitiveStep(
name="Contextual Grounding",
description="Establishing broader context and knowledge framework",
content=context,
execution_time=context_time
))
# Stage 4: Critical Evaluation (Llama)
critique_start = time.time()
critique = await self.call_model_async(
"Llama",
f"""Perform a comprehensive critique of the analysis so far:
QUERY: {query}
DECOMPOSITION: {decomposition}
ANALYSIS: {combined_analysis}
CONTEXT: {context}
Evaluate for:
- Logical fallacies
- Gaps in reasoning
- Unfounded assumptions
- Alternative interpretations
- Counterarguments
- Strength of evidence
"""
)
critique_time = time.time() - critique_start
self.thinking_steps.append(CognitiveStep(
name="Critical Evaluation",
description="Rigorously challenging the analysis through critical thinking",
content=critique,
execution_time=critique_time
))
# Stage 5: Ethical Consideration (DeepSeek)
ethics_start = time.time()
ethics = await self.call_model_async(
"DeepSeek", # Updated to DeepSeek
f"""Analyze the ethical dimensions of responding to:
"{query}"
Consider:
- Stakeholder impacts
- Value conflicts
- Potential for harm
- Justice and fairness implications
- Transparency requirements
- Long-term consequences
- Ethical frameworks applicable (deontological, utilitarian, virtue ethics, etc.)
Provide concrete ethical recommendations.
"""
)
ethics_time = time.time() - ethics_start
self.thinking_steps.append(CognitiveStep(
name="Ethical Analysis",
description="Evaluating moral implications and ethical considerations",
content=ethics,
execution_time=ethics_time
))
# Stage 6: Innovation Generation (DeepSeek)
innovation_start = time.time()
innovation = await self.call_model_async(
"DeepSeek",
f"""Generate innovative approaches and novel perspectives for addressing:
"{query}"
Go beyond conventional thinking to propose:
- Creative frameworks
- Interdisciplinary approaches
- Unexpected connections
- Paradigm shifts
- Breakthrough methodologies
"""
)
innovation_time = time.time() - innovation_start
self.thinking_steps.append(CognitiveStep(
name="Innovation Generation",
description="Creating novel approaches and unconventional perspectives",
content=innovation,
execution_time=innovation_time
))
# Stage 7: Integration (Gemini)
integration_start = time.time()
integration = await self.call_model_async(
"Gemini",
f"""Integrate all preceding analyses into a coherent framework:
COMPONENTS:
- Decomposition: {decomposition}
- Analysis: {combined_analysis}
- Context: {context}
- Critique: {critique}
- Ethics: {ethics}
- Innovation: {innovation}
Create a unified, comprehensive understanding that resolves contradictions
and synthesizes insights from all components. Structure your integration
systematically, addressing each major aspect of the query.
"""
)
integration_time = time.time() - integration_start
self.thinking_steps.append(CognitiveStep(
name="Integration",
description="Synthesizing all insights into a unified framework",
content=integration,
execution_time=integration_time
))
# Stage 8: Response Synthesis (GPT-4o)
synthesis_start = time.time()
synthesis = await self.call_model_async(
"GPT4o",
f"""Synthesize a complete response based on all analysis:
ORIGINAL QUERY: "{query}"
INTEGRATION FRAMEWORK: {integration}
Create a comprehensive, well-structured response that:
1. Directly addresses the core query
2. Incorporates key insights from all analyses
3. Presents multiple perspectives where relevant
4. Acknowledges limitations and uncertainties
5. Provides actionable conclusions
Format your response for clarity and impact.
"""
)
synthesis_time = time.time() - synthesis_start
self.thinking_steps.append(CognitiveStep(
name="Response Synthesis",
description="Crafting a comprehensive answer from the integrated analysis",
content=synthesis,
execution_time=synthesis_time
))
# Stage 9: Validation & Refinement (DeepSeek)
validation_start = time.time()
validation = await self.call_model_async(
"DeepSeek", # Updated to DeepSeek
f"""Validate and refine this comprehensive response:
ORIGINAL QUERY: "{query}"
PROPOSED RESPONSE:
{synthesis}
Please evaluate this response for:
- Accuracy and factual correctness
- Completeness (addressing all aspects of the query)
- Clarity and coherence
- Logical consistency
- Relevance to the original query
- Balance and fairness
Then provide an optimized final version that addresses any identified issues
while maintaining the core insights and structure.
"""
)
validation_time = time.time() - validation_start
self.thinking_steps.append(CognitiveStep(
name="Validation & Refinement",
description="Final quality assurance and optimization",
content=validation,
execution_time=validation_time
))
# Extract metadata for analysis
structured_data = {
"components": self.extract_structured_data(decomposition),
"analysis": self.extract_structured_data(combined_analysis),
"validation": self.extract_structured_data(validation),
"execution_metrics": {
"total_time": sum(step.execution_time for step in self.thinking_steps),
"step_times": {step.name: step.execution_time for step in self.thinking_steps}
}
}
# Add to memory for future reference
self.memory.append({
"query": query,
"response": validation,
"thinking_steps": [
{"name": step.name, "content": step.content} for step in self.thinking_steps
],
"timestamp": time.time()
})
return validation, structured_data
except Exception as e:
error_msg = f"Reasoning Error: {str(e)}"
self.log(error_msg, "ERROR")
return f"Cognitive processing failed: {error_msg}", {}
def extract_structured_data(self, text: str) -> dict:
"""Advanced text parsing with multi-strategy fallbacks"""
try:
# Strategy 1: JSON extraction
json_match = re.search(r'\{.*\}', text, re.DOTALL)
if json_match:
try:
return json.loads(json_match.group(0))
except json.JSONDecodeError:
pass # Continue to next strategy
# Strategy 2: Markdown list parsing
structured_data = {}
section_pattern = r'##?\s+(.+?)\n(.*?)(?=##?\s+|\Z)'
sections = re.findall(section_pattern, text, re.DOTALL)
if sections:
for title, content in sections:
structured_data[title.strip().lower().replace(' ', '_')] = content.strip()
return structured_data
# Strategy 3: Bullet point parsing
bullet_pattern = r'[-\*]\s+([^:]+):\s*(.*?)(?=[-\*]|\Z)'
bullets = re.findall(bullet_pattern, text, re.DOTALL)
if bullets:
for key, value in bullets:
structured_data[key.strip().lower().replace(' ', '_')] = value.strip()
return structured_data
# Strategy 4: Key-value line parsing
line_pattern = r'([^:]+):\s*(.*)'
lines = re.findall(line_pattern, text)
if lines:
for key, value in lines:
structured_data[key.strip().lower().replace(' ', '_')] = value.strip()
return structured_data
# Fallback
return {"content": text}
except Exception as e:
self.log(f"Parsing Error: {str(e)}", "ERROR")
return {"error": "Failed to parse response", "raw_text": text}
def visualize_thought_process(self) -> str:
"""Interactive process visualization with timing data"""
if not self.thinking_steps:
return "<div class='error'>No thinking process data available</div>"
total_time = sum(step.execution_time for step in self.thinking_steps)
vis = ["<div class='cognitive-process'>"]
vis.append("<h2>Cognitive Process Breakdown</h2>")
vis.append(f"<div class='total-time'>Total Processing Time: {total_time:.2f}s</div>")
# Add timeline visualization
vis.append("<div class='timeline'>")
for step in self.thinking_steps:
percentage = (step.execution_time / total_time) * 100
vis.append(f"""
<div class='timeline-bar' style='width: {percentage}%;'>
<div class='step-name'>{step.name}</div>
<div class='step-time'>{step.execution_time:.2f}s</div>
</div>
""")
vis.append("</div>")
# Add detailed step breakdown
for i, step in enumerate(self.thinking_steps):
vis.append(f"""
<div class='process-step' id='step-{i}'>
<div class='step-header'>
<h3>{step.name}</h3>
<div class='step-info'>
<span class='step-number'>Step {i+1}/{len(self.thinking_steps)}</span>
<span class='step-time'>{step.execution_time:.2f}s</span>
</div>
</div>
<div class='step-description'>{step.description}</div>
<pre class='step-content'>{step.content}</pre>
</div>
""")
vis.append("</div>")
return "\n".join(vis)
def create_agi_interface():
try:
agi = CognitiveArchitecture(debug_mode=True)
except ValueError as e:
return gr.Blocks().launch(error_message=str(e))
with gr.Blocks(title="Advanced AGI Reasoning Framework", theme=gr.themes.Soft(), css="""
.cognitive-process {
max-width: 1200px;
margin: 0 auto;
}
.total-time {
font-size: 1.2em;
font-weight: bold;
margin: 15px 0;
color: #2a4365;
}
.timeline {
display: flex;
height: 40px;
background: #f0f0f0;
margin: 20px 0;
border-radius: 4px;
overflow: hidden;
}
.timeline-bar {
height: 100%;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
background: #4299e1;
color: white;
font-size: 0.8em;
position: relative;
min-width: 30px;
padding: 0 5px;
}
.timeline-bar:nth-child(odd) {
background: #3182ce;
}
.step-name, .step-time {
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
.process-step {
margin: 25px 0;
padding: 20px;
border: 1px solid #e0e0e0;
border-radius: 8px;
background: #fafafa;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.step-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 10px;
}
.step-header h3 {
color: #2b6cb0;
margin: 0;
font-size: 1.2em;
}
.step-info {
display: flex;
gap: 15px;
font-size: 0.9em;
}
.step-number {
color: #4a5568;
}
.step-time {
color: #2d3748;
font-weight: bold;
}
.step-description {
color: #4a5568;
margin-bottom: 15px;
font-style: italic;
}
.step-content {
white-space: pre-wrap;
background: #f8f9fa;
padding: 15px;
border-radius: 6px;
border: 1px solid #eee;
font-family: monospace;
font-size: 0.9em;
overflow-x: auto;
max-height: 400px;
overflow-y: auto;
}
.error {
color: #e53e3e;
padding: 20px;
text-align: center;
font-weight: bold;
}
""") as demo:
gr.Markdown("# 🧠 Advanced AGI Cognitive Reasoning Framework")
with gr.Row():
with gr.Column(scale=3):
input_box = gr.Textbox(
label="Input Query",
placeholder="Enter your complex request or question...",
lines=5
)
with gr.Column(scale=1):
with gr.Row():
process_btn = gr.Button("Begin Cognitive Processing", variant="primary", size="lg")
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Accordion("Advanced Options", open=False):
thinking_depth = gr.Slider(
minimum=1,
maximum=9,
value=9,
step=1,
label="Reasoning Depth",
info="Number of cognitive steps to perform"
)
with gr.Tabs():
with gr.TabItem("Response"):
output = gr.Markdown()
with gr.TabItem("Cognitive Process"):
process_visual = gr.HTML()
with gr.TabItem("Performance Metrics"):
metrics = gr.JSON()
async def process_query(query, depth):
agi.log(f"Processing query with depth {depth}: {query}")
progress_bar = gr.Progress()
progress_bar(0, desc="Initializing...")
try:
start_time = time.time()
# Limit the steps based on depth setting
agi.thinking_steps = agi.thinking_steps[:depth] if agi.thinking_steps else []
final, metadata = await agi.hierarchical_reasoning(query)
process_time = time.time() - start_time
# Prepare performance metrics
steps_data = []
for step in agi.thinking_steps:
steps_data.append({
"name": step.name,
"time": step.execution_time,
"percentage": (step.execution_time / process_time) * 100
})
metrics_data = {
"total_time": process_time,
"steps_completed": len(agi.thinking_steps),
"average_step_time": sum(s["time"] for s in steps_data) / len(steps_data) if steps_data else 0,
"steps": steps_data,
"metadata": metadata
}
return (
f"## Optimized Response\n{final}\n\n"
f"**Processing Time**: {process_time:.2f}s\n"
f"**Cognitive Steps Executed**: {len(agi.thinking_steps)}",
agi.visualize_thought_process(),
metrics_data
)
except Exception as e:
return (
f"## Error Processing Query\n\nAn error occurred: {str(e)}",
f"<div class='error'>Processing error: {str(e)}</div>",
{"error": str(e)}
)
def clear_interface():
return "", "", None
process_btn.click(
fn=process_query,
inputs=[input_box, thinking_depth],
outputs=[output, process_visual, metrics]
)
clear_btn.click(
fn=clear_interface,
inputs=[],
outputs=[output, process_visual, metrics]
)
return demo
if __name__ == "__main__":
app = create_agi_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860
) |