File size: 32,329 Bytes
d6a3aa4
 
 
 
 
9c89d97
23c1855
d6a3aa4
 
23c1855
 
 
 
 
 
 
 
 
 
 
d6a3aa4
9c89d97
23c1855
 
707c36e
 
 
 
6a66c52
707c36e
 
 
23c1855
707c36e
23c1855
 
 
 
707c36e
9c89d97
707c36e
 
 
 
23c1855
01ff908
23c1855
 
 
6a66c52
707c36e
 
9c89d97
23c1855
 
 
 
 
 
 
 
 
707c36e
23c1855
 
 
 
707c36e
9c89d97
23c1855
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
 
 
 
 
 
707c36e
23c1855
 
 
 
 
 
 
 
 
 
707c36e
23c1855
 
 
 
707c36e
6a66c52
23c1855
 
 
707c36e
23c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707c36e
23c1855
 
 
 
9c89d97
23c1855
 
707c36e
23c1855
 
 
 
 
 
9c89d97
23c1855
 
 
 
 
 
 
 
9c89d97
 
23c1855
 
9c89d97
 
23c1855
1fb8db4
23c1855
 
 
 
707c36e
 
23c1855
 
707c36e
23c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c89d97
23c1855
 
 
 
 
 
 
 
 
 
 
 
1fb8db4
 
23c1855
 
 
9c89d97
23c1855
1fb8db4
23c1855
 
 
 
 
9c89d97
23c1855
 
707c36e
23c1855
 
 
 
9c89d97
23c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
 
1fb8db4
23c1855
1fb8db4
23c1855
 
 
 
 
 
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
1fb8db4
23c1855
 
 
 
 
 
 
 
 
9c89d97
 
23c1855
 
 
 
 
 
 
 
 
 
 
 
9c89d97
23c1855
 
 
707c36e
23c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a3aa4
23c1855
d6a3aa4
 
 
23c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a3aa4
 
23c1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a3aa4
23c1855
 
 
 
 
 
 
 
 
636ca5f
23c1855
 
 
628ea63
 
 
 
 
23c1855
628ea63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636ca5f
23c1855
 
 
 
 
 
 
d6a3aa4
23c1855
 
 
 
 
 
 
d6a3aa4
 
 
23c1855
 
 
628ea63
23c1855
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
import os
import time
import gradio as gr
import requests
import json
import re
import asyncio
import google.generativeai as genai
from openai import OpenAI
from typing import List, Dict, Tuple, Any, Optional, Union
from dataclasses import dataclass, field
from concurrent.futures import ThreadPoolExecutor

@dataclass
class CognitiveStep:
    name: str
    description: str
    content: str = ""
    metadata: Dict[str, Any] = field(default_factory=dict)
    execution_time: float = 0.0

class CognitiveArchitecture:
    def __init__(self, debug_mode: bool = False):
        self.debug_mode = debug_mode
        self.api_keys = {
            "GEMINI": os.environ.get("GEMINI_API_KEY"),
            "MISTRAL": os.environ.get("MISTRAL_API_KEY"),
            "OPENROUTER": os.environ.get("OPENROUTER_API_KEY"),
            "AZURE": os.environ.get("AZURE_API_KEY")
        }
        self.validate_keys()
        
        # Initialize all AI models
        genai.configure(api_key=self.api_keys["GEMINI"])
        self.gemini_model = genai.GenerativeModel(
            "gemini-2.0-pro-exp-02-05",
            generation_config={"temperature": 0.5, "max_output_tokens": 8192}
        )
        
        self.gpt4o_client = OpenAI(
            base_url="https://models.inference.ai.azure.com",
            api_key=self.api_keys["AZURE"]
        )

        self.models = {
            "DeepSeek": "deepseek/deepseek-chat:free",  # Updated to DeepSeek
            "Qwen": "qwen/qwen-vl-plus:free",
            "Llama": "meta-llama/llama-3.3-70b-instruct:free",
            "Mistral": "mistral-large-latest",
            "GPT4o": "gpt-4o"
        }

        self.headers = {
            "OpenRouter": {
                "Authorization": f"Bearer {self.api_keys['OPENROUTER']}",
                "Content-Type": "application/json"
            },
            "Mistral": {
                "Authorization": f"Bearer {self.api_keys['MISTRAL']}",
                "Content-Type": "application/json",
                "Accept": "application/json"
            }
        }
        
        self.memory = []
        self.thinking_steps = []
        self.executor = ThreadPoolExecutor(max_workers=5)

    def validate_keys(self):
        missing_keys = [key for key, value in self.api_keys.items() if not value]
        if missing_keys:
            if self.debug_mode:
                print(f"Warning: Missing API keys: {', '.join(missing_keys)}")
            else:
                raise ValueError(f"Missing API keys: {', '.join(missing_keys)}")

    def log(self, message: str, level: str = "INFO"):
        """Enhanced logging with timestamps"""
        if self.debug_mode:
            timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
            print(f"[{timestamp}] [{level}] {message}")

    async def call_model_async(self, model_role: str, prompt: str, context: List[Dict] = None) -> str:
        """Asynchronous model router with advanced error handling"""
        self.log(f"Calling {model_role} model")
        start_time = time.time()
        
        try:
            if model_role == "Gemini":
                response = await asyncio.to_thread(
                    self.gemini_model.generate_content, prompt
                )
                result = response.text
            
            elif model_role == "Mistral":
                result = await asyncio.to_thread(
                    self._call_mistral, prompt, context
                )
            
            elif model_role == "GPT4o":
                result = await asyncio.to_thread(
                    self._call_gpt4o, prompt, context
                )
            
            elif model_role == "DeepSeek":
                result = await asyncio.to_thread(
                    self._call_deepseek, prompt, context  # Updated to DeepSeek
                )
            
            # Handle OpenRouter models
            else:
                payload = {
                    "model": self.models.get(model_role, model_role),
                    "messages": context if context else [{"role": "user", "content": prompt}],
                    "temperature": 0.7,
                    "max_tokens": 3096,
                    "top_p": 0.9
                }
                
                async with asyncio.timeout(30):
                    response = await asyncio.to_thread(
                        requests.post,
                        "https://openrouter.ai/api/v1/chat/completions",
                        headers=self.headers["OpenRouter"],
                        json=payload
                    )
                
                if response.status_code == 200:
                    result = response.json()['choices'][0]['message']['content']
                else:
                    result = f"API Error {response.status_code}: {response.text}"
            
            execution_time = time.time() - start_time
            self.log(f"{model_role} completed in {execution_time:.2f}s")
            return result
        
        except Exception as e:
            self.log(f"Model Error ({model_role}): {str(e)}", "ERROR")
            return f"Error with {model_role}: {str(e)}"

    def call_model(self, model_role: str, prompt: str, context: List[Dict] = None) -> str:
        """Synchronous wrapper for legacy compatibility"""
        return asyncio.run(self.call_model_async(model_role, prompt, context))

    def _call_mistral(self, prompt: str, context: List[Dict] = None) -> str:
        """Direct Mistral API call with improved error handling"""
        try:
            payload = {
                "model": self.models["Mistral"],
                "messages": context if context else [{"role": "user", "content": prompt}],
                "temperature": 0.7,
                "max_tokens": 4096,
                "top_p": 0.9
            }
            
            response = requests.post(
                "https://api.mistral.ai/v1/chat/completions",
                headers=self.headers["Mistral"],
                json=payload,
                timeout=30
            )
            
            if response.status_code == 200:
                return response.json()['choices'][0]['message']['content']
            
            self.log(f"Mistral API error: {response.status_code} - {response.text}", "ERROR")
            return f"API Error {response.status_code}"

        except Exception as e:
            self.log(f"Mistral API Error: {str(e)}", "ERROR")
            return f"Error: {str(e)}"

    def _call_gpt4o(self, prompt: str, context: List[Dict] = None) -> str:
        """Azure Inference API for GPT-4o with retry logic"""
        max_retries = 2
        retry_count = 0
        
        while retry_count <= max_retries:
            try:
                messages = context if context else [
                    {"role": "system", "content": "You are an expert analyst with multi-step reasoning capabilities."},
                    {"role": "user", "content": prompt}
                ]
                
                response = self.gpt4o_client.chat.completions.create(
                    model=self.models["GPT4o"],
                    messages=messages,
                    temperature=0.7,
                    top_p=0.95,
                    max_tokens=2000
                )
                
                return response.choices[0].message.content
            
            except Exception as e:
                retry_count += 1
                if retry_count <= max_retries:
                    self.log(f"GPT-4o Error, retrying ({retry_count}/{max_retries}): {str(e)}", "WARNING")
                    time.sleep(2)  # Backoff before retry
                else:
                    self.log(f"GPT-4o Error after retries: {str(e)}", "ERROR")
                    return f"Error after {max_retries} retries: {str(e)}"

    def _call_deepseek(self, prompt: str, context: List[Dict] = None) -> str:
        """DeepSeek API integration"""
        try:
            if context:
                messages = [{"role": m["role"], "content": m["content"]} for m in context]
            else:
                messages = [{"role": "user", "content": prompt}]
            
            payload = {
                "model": self.models["DeepSeek"],
                "messages": messages,
                "max_tokens": 4000,
                "temperature": 0.5
            }
            
            response = requests.post(
                "https://openrouter.ai/api/v1/chat/completions",
                headers=self.headers["OpenRouter"],
                json=payload,
                timeout=45
            )
            
            if response.status_code == 200:
                return response.json()['choices'][0]['message']['content']
            
            self.log(f"DeepSeek API error: {response.status_code} - {response.text}", "ERROR")
            return f"API Error {response.status_code}"
            
        except Exception as e:
            self.log(f"DeepSeek API Error: {str(e)}", "ERROR")
            return f"Error: {str(e)}"

    async def hierarchical_reasoning(self, query: str) -> Tuple[str, dict]:
        """Nine-stage AGI reasoning pipeline with concurrent model calling"""
        self.thinking_steps = []
        
        try:
            # Stage 1: Conceptual Decomposition (Mistral)
            decomp_start = time.time()
            decomposition_prompt = f"""Decompose the following query into detailed components:
            
            QUERY: "{query}"
            
            Output format:
            - Primary Intent: [What is the main goal]
            - Implicit Assumptions: [List all unstated assumptions]
            - Required Knowledge Domains: [Specific domains needed to answer]
            - Potential Biases: [Cognitive biases that might affect reasoning]
            - Key Constraints: [Limitations or boundaries]
            - Sub-Questions: [List of component questions needed to fully address]
            """
            
            decomposition = await self.call_model_async("Mistral", decomposition_prompt)
            decomp_time = time.time() - decomp_start
            
            self.thinking_steps.append(CognitiveStep(
                name="Conceptual Decomposition",
                description="Breaking down the query into its foundational components",
                content=decomposition,
                execution_time=decomp_time
            ))
            
            # Stage 2: Parallel Deep Analysis (Multiple models concurrently)
            analysis_tasks = [
                self.call_model_async(
                    "GPT4o",
                    f"""Analyze this query using first principles thinking:
                    QUERY: {query}
                    DECOMPOSITION: {decomposition}
                    
                    Include multiple angles of analysis, potential solution paths, and identify knowledge gaps."""
                ),
                self.call_model_async(
                    "DeepSeek",  # Updated to DeepSeek
                    f"""Generate a systematic analysis framework for addressing:
                    "{query}"
                    
                    Focus on:
                    1. Deep structure of the problem
                    2. Alternative perspectives
                    3. Root causes and implications
                    4. Knowledge requirements
                    """
                ),
                self.call_model_async(
                    "Mistral",
                    f"""Create a comprehensive concept map for the query:
                    "{query}"
                    
                    Map out:
                    - Core concepts
                    - Their relationships
                    - Dependencies
                    - Decision points
                    - Critical factors
                    """
                )
            ]
            
            analysis_start = time.time()
            analysis_results = await asyncio.gather(*analysis_tasks)
            analysis_time = time.time() - analysis_start
            
            # Combine the analyses with attribution
            combined_analysis = f"""
            ## GPT-4o Analysis
            {analysis_results[0]}
            
            ## DeepSeek Analysis
            {analysis_results[1]}
            
            ## Mistral Concept Map
            {analysis_results[2]}
            """
            
            self.thinking_steps.append(CognitiveStep(
                name="Multi-Model Deep Analysis",
                description="Parallel processing across different reasoning systems",
                content=combined_analysis,
                execution_time=analysis_time
            ))
            
            # Stage 3: Contextual Grounding (Qwen)
            context_start = time.time()
            context = await self.call_model_async(
                "Qwen",
                f"""Generate comprehensive context for addressing this query:
                "{query}"
                
                Include:
                - Relevant background information
                - Historical context
                - Current state of the art
                - Common misconceptions
                - Established frameworks
                - Similar problems and their solutions
                """
            )
            context_time = time.time() - context_start
            
            self.thinking_steps.append(CognitiveStep(
                name="Contextual Grounding",
                description="Establishing broader context and knowledge framework",
                content=context,
                execution_time=context_time
            ))
            
            # Stage 4: Critical Evaluation (Llama)
            critique_start = time.time()
            critique = await self.call_model_async(
                "Llama",
                f"""Perform a comprehensive critique of the analysis so far:
                
                QUERY: {query}
                DECOMPOSITION: {decomposition}
                ANALYSIS: {combined_analysis}
                CONTEXT: {context}
                
                Evaluate for:
                - Logical fallacies
                - Gaps in reasoning
                - Unfounded assumptions
                - Alternative interpretations
                - Counterarguments
                - Strength of evidence
                """
            )
            critique_time = time.time() - critique_start
            
            self.thinking_steps.append(CognitiveStep(
                name="Critical Evaluation",
                description="Rigorously challenging the analysis through critical thinking",
                content=critique,
                execution_time=critique_time
            ))
            
            # Stage 5: Ethical Consideration (DeepSeek)
            ethics_start = time.time()
            ethics = await self.call_model_async(
                "DeepSeek",  # Updated to DeepSeek
                f"""Analyze the ethical dimensions of responding to:
                "{query}"
                
                Consider:
                - Stakeholder impacts
                - Value conflicts
                - Potential for harm
                - Justice and fairness implications
                - Transparency requirements
                - Long-term consequences
                - Ethical frameworks applicable (deontological, utilitarian, virtue ethics, etc.)
                
                Provide concrete ethical recommendations.
                """
            )
            ethics_time = time.time() - ethics_start
            
            self.thinking_steps.append(CognitiveStep(
                name="Ethical Analysis",
                description="Evaluating moral implications and ethical considerations",
                content=ethics,
                execution_time=ethics_time
            ))
            
            # Stage 6: Innovation Generation (DeepSeek)
            innovation_start = time.time()
            innovation = await self.call_model_async(
                "DeepSeek",
                f"""Generate innovative approaches and novel perspectives for addressing:
                "{query}"
                
                Go beyond conventional thinking to propose:
                - Creative frameworks
                - Interdisciplinary approaches
                - Unexpected connections
                - Paradigm shifts
                - Breakthrough methodologies
                """
            )
            innovation_time = time.time() - innovation_start
            
            self.thinking_steps.append(CognitiveStep(
                name="Innovation Generation",
                description="Creating novel approaches and unconventional perspectives",
                content=innovation,
                execution_time=innovation_time
            ))
            
            # Stage 7: Integration (Gemini)
            integration_start = time.time()
            integration = await self.call_model_async(
                "Gemini",
                f"""Integrate all preceding analyses into a coherent framework:
                
                COMPONENTS:
                - Decomposition: {decomposition}
                - Analysis: {combined_analysis}
                - Context: {context}
                - Critique: {critique}
                - Ethics: {ethics}
                - Innovation: {innovation}
                
                Create a unified, comprehensive understanding that resolves contradictions
                and synthesizes insights from all components. Structure your integration
                systematically, addressing each major aspect of the query.
                """
            )
            integration_time = time.time() - integration_start
            
            self.thinking_steps.append(CognitiveStep(
                name="Integration",
                description="Synthesizing all insights into a unified framework",
                content=integration,
                execution_time=integration_time
            ))
            
            # Stage 8: Response Synthesis (GPT-4o)
            synthesis_start = time.time()
            synthesis = await self.call_model_async(
                "GPT4o",
                f"""Synthesize a complete response based on all analysis:
                
                ORIGINAL QUERY: "{query}"
                
                INTEGRATION FRAMEWORK: {integration}
                
                Create a comprehensive, well-structured response that:
                1. Directly addresses the core query
                2. Incorporates key insights from all analyses
                3. Presents multiple perspectives where relevant
                4. Acknowledges limitations and uncertainties
                5. Provides actionable conclusions
                
                Format your response for clarity and impact.
                """
            )
            synthesis_time = time.time() - synthesis_start
            
            self.thinking_steps.append(CognitiveStep(
                name="Response Synthesis",
                description="Crafting a comprehensive answer from the integrated analysis",
                content=synthesis,
                execution_time=synthesis_time
            ))
            
            # Stage 9: Validation & Refinement (DeepSeek)
            validation_start = time.time()
            validation = await self.call_model_async(
                "DeepSeek",  # Updated to DeepSeek
                f"""Validate and refine this comprehensive response:
                
                ORIGINAL QUERY: "{query}"
                
                PROPOSED RESPONSE:
                {synthesis}
                
                Please evaluate this response for:
                - Accuracy and factual correctness
                - Completeness (addressing all aspects of the query)
                - Clarity and coherence
                - Logical consistency
                - Relevance to the original query
                - Balance and fairness
                
                Then provide an optimized final version that addresses any identified issues
                while maintaining the core insights and structure.
                """
            )
            validation_time = time.time() - validation_start
            
            self.thinking_steps.append(CognitiveStep(
                name="Validation & Refinement",
                description="Final quality assurance and optimization",
                content=validation,
                execution_time=validation_time
            ))
            
            # Extract metadata for analysis
            structured_data = {
                "components": self.extract_structured_data(decomposition),
                "analysis": self.extract_structured_data(combined_analysis),
                "validation": self.extract_structured_data(validation),
                "execution_metrics": {
                    "total_time": sum(step.execution_time for step in self.thinking_steps),
                    "step_times": {step.name: step.execution_time for step in self.thinking_steps}
                }
            }
            
            # Add to memory for future reference
            self.memory.append({
                "query": query,
                "response": validation,
                "thinking_steps": [
                    {"name": step.name, "content": step.content} for step in self.thinking_steps
                ],
                "timestamp": time.time()
            })
            
            return validation, structured_data
        
        except Exception as e:
            error_msg = f"Reasoning Error: {str(e)}"
            self.log(error_msg, "ERROR")
            return f"Cognitive processing failed: {error_msg}", {}

    def extract_structured_data(self, text: str) -> dict:
        """Advanced text parsing with multi-strategy fallbacks"""
        try:
            # Strategy 1: JSON extraction
            json_match = re.search(r'\{.*\}', text, re.DOTALL)
            if json_match:
                try:
                    return json.loads(json_match.group(0))
                except json.JSONDecodeError:
                    pass  # Continue to next strategy
            
            # Strategy 2: Markdown list parsing
            structured_data = {}
            section_pattern = r'##?\s+(.+?)\n(.*?)(?=##?\s+|\Z)'
            sections = re.findall(section_pattern, text, re.DOTALL)
            
            if sections:
                for title, content in sections:
                    structured_data[title.strip().lower().replace(' ', '_')] = content.strip()
                return structured_data
            
            # Strategy 3: Bullet point parsing
            bullet_pattern = r'[-\*]\s+([^:]+):\s*(.*?)(?=[-\*]|\Z)'
            bullets = re.findall(bullet_pattern, text, re.DOTALL)
            
            if bullets:
                for key, value in bullets:
                    structured_data[key.strip().lower().replace(' ', '_')] = value.strip()
                return structured_data
            
            # Strategy 4: Key-value line parsing
            line_pattern = r'([^:]+):\s*(.*)'
            lines = re.findall(line_pattern, text)
            
            if lines:
                for key, value in lines:
                    structured_data[key.strip().lower().replace(' ', '_')] = value.strip()
                return structured_data
            
            # Fallback
            return {"content": text}
        
        except Exception as e:
            self.log(f"Parsing Error: {str(e)}", "ERROR")
            return {"error": "Failed to parse response", "raw_text": text}

    def visualize_thought_process(self) -> str:
        """Interactive process visualization with timing data"""
        if not self.thinking_steps:
            return "<div class='error'>No thinking process data available</div>"
            
        total_time = sum(step.execution_time for step in self.thinking_steps)
        
        vis = ["<div class='cognitive-process'>"]
        vis.append("<h2>Cognitive Process Breakdown</h2>")
        vis.append(f"<div class='total-time'>Total Processing Time: {total_time:.2f}s</div>")
        
        # Add timeline visualization
        vis.append("<div class='timeline'>")
        for step in self.thinking_steps:
            percentage = (step.execution_time / total_time) * 100
            vis.append(f"""
            <div class='timeline-bar' style='width: {percentage}%;'>
                <div class='step-name'>{step.name}</div>
                <div class='step-time'>{step.execution_time:.2f}s</div>
            </div>
            """)
        vis.append("</div>")
        
        # Add detailed step breakdown
        for i, step in enumerate(self.thinking_steps):
            vis.append(f"""
            <div class='process-step' id='step-{i}'>
                <div class='step-header'>
                    <h3>{step.name}</h3>
                    <div class='step-info'>
                        <span class='step-number'>Step {i+1}/{len(self.thinking_steps)}</span>
                        <span class='step-time'>{step.execution_time:.2f}s</span>
                    </div>
                </div>
                <div class='step-description'>{step.description}</div>
                <pre class='step-content'>{step.content}</pre>
            </div>
            """)
        
        vis.append("</div>")
        return "\n".join(vis)

def create_agi_interface():
    try:
        agi = CognitiveArchitecture(debug_mode=True)
    except ValueError as e:
        return gr.Blocks().launch(error_message=str(e))
    
    with gr.Blocks(title="Advanced AGI Reasoning Framework", theme=gr.themes.Soft(), css="""
        .cognitive-process {
            max-width: 1200px;
            margin: 0 auto;
        }
        .total-time {
            font-size: 1.2em;
            font-weight: bold;
            margin: 15px 0;
            color: #2a4365;
        }
        .timeline {
            display: flex;
            height: 40px;
            background: #f0f0f0;
            margin: 20px 0;
            border-radius: 4px;
            overflow: hidden;
        }
        .timeline-bar {
            height: 100%;
            display: flex;
            flex-direction: column;
            justify-content: center;
            align-items: center;
            background: #4299e1;
            color: white;
            font-size: 0.8em;
            position: relative;
            min-width: 30px;
            padding: 0 5px;
        }
        .timeline-bar:nth-child(odd) {
            background: #3182ce;
        }
        .step-name, .step-time {
            white-space: nowrap;
            overflow: hidden;
            text-overflow: ellipsis;
        }
        .process-step {
            margin: 25px 0;
            padding: 20px;
            border: 1px solid #e0e0e0;
            border-radius: 8px;
            background: #fafafa;
            box-shadow: 0 2px 4px rgba(0,0,0,0.05);
        }
        .step-header {
            display: flex;
            justify-content: space-between;
            align-items: center;
            margin-bottom: 10px;
        }
        .step-header h3 {
            color: #2b6cb0;
            margin: 0;
            font-size: 1.2em;
        }
        .step-info {
            display: flex;
            gap: 15px;
            font-size: 0.9em;
        }
        .step-number {
            color: #4a5568;
        }
        .step-time {
            color: #2d3748;
            font-weight: bold;
        }
        .step-description {
            color: #4a5568;
            margin-bottom: 15px;
            font-style: italic;
        }
        .step-content {
            white-space: pre-wrap;
            background: #f8f9fa;
            padding: 15px;
            border-radius: 6px;
            border: 1px solid #eee;
            font-family: monospace;
            font-size: 0.9em;
            overflow-x: auto;
            max-height: 400px;
            overflow-y: auto;
        }
        .error {
            color: #e53e3e;
            padding: 20px;
            text-align: center;
            font-weight: bold;
        }
        """) as demo:
        gr.Markdown("# 🧠 Advanced AGI Cognitive Reasoning Framework")
        
        with gr.Row():
            with gr.Column(scale=3):
                input_box = gr.Textbox(
                    label="Input Query",
                    placeholder="Enter your complex request or question...",
                    lines=5
                )
            
            with gr.Column(scale=1):
                with gr.Row():
                    process_btn = gr.Button("Begin Cognitive Processing", variant="primary", size="lg")
                
                with gr.Row():
                    clear_btn = gr.Button("Clear", variant="secondary")
                
                with gr.Accordion("Advanced Options", open=False):
                    thinking_depth = gr.Slider(
                        minimum=1,
                        maximum=9,
                        value=9,
                        step=1,
                        label="Reasoning Depth",
                        info="Number of cognitive steps to perform"
                    )
        
        with gr.Tabs():
            with gr.TabItem("Response"):
                output = gr.Markdown()
            
            with gr.TabItem("Cognitive Process"):
                process_visual = gr.HTML()
            
            with gr.TabItem("Performance Metrics"):
                metrics = gr.JSON()
        
        async def process_query(query, depth):
            agi.log(f"Processing query with depth {depth}: {query}")
            
            progress_bar = gr.Progress()
            progress_bar(0, desc="Initializing...")
            
            try:
                start_time = time.time()
                
                # Limit the steps based on depth setting
                agi.thinking_steps = agi.thinking_steps[:depth] if agi.thinking_steps else []
                
                final, metadata = await agi.hierarchical_reasoning(query)
                process_time = time.time() - start_time
                
                # Prepare performance metrics
                steps_data = []
                for step in agi.thinking_steps:
                    steps_data.append({
                        "name": step.name,
                        "time": step.execution_time,
                        "percentage": (step.execution_time / process_time) * 100
                    })
                
                metrics_data = {
                    "total_time": process_time,
                    "steps_completed": len(agi.thinking_steps),
                    "average_step_time": sum(s["time"] for s in steps_data) / len(steps_data) if steps_data else 0,
                    "steps": steps_data,
                    "metadata": metadata
                }
                
                return (
                    f"## Optimized Response\n{final}\n\n"
                    f"**Processing Time**: {process_time:.2f}s\n"
                    f"**Cognitive Steps Executed**: {len(agi.thinking_steps)}",
                    agi.visualize_thought_process(),
                    metrics_data
                )
            except Exception as e:
                return (
                    f"## Error Processing Query\n\nAn error occurred: {str(e)}",
                    f"<div class='error'>Processing error: {str(e)}</div>",
                    {"error": str(e)}
                )
        
        def clear_interface():
            return "", "", None
        
        process_btn.click(
            fn=process_query,
            inputs=[input_box, thinking_depth],
            outputs=[output, process_visual, metrics]
        )
        
        clear_btn.click(
            fn=clear_interface,
            inputs=[],
            outputs=[output, process_visual, metrics]
        )
        
    return demo

if __name__ == "__main__":
    app = create_agi_interface()
    app.launch(
        server_name="0.0.0.0",
        server_port=7860
    )