Spaces:
Running
Running
File size: 1,741 Bytes
caff61e bccf53b dc80d48 0152e0c 4fa263e caff61e 0152e0c b5a364c 0152e0c 36e1064 0152e0c e82b28e 8513c99 0152e0c 3e3644e 0152e0c 8513c99 3e3644e 0152e0c 3e3644e 0152e0c 3e3644e 0152e0c 8513c99 3e3644e 8513c99 0152e0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import torch
import numpy as np
import gradio as gr
import cv2
import time
from PIL import Image
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load YOLOv5 model
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
if device.type == "cuda":
model.half() # Use FP16 for performance boost
# Print available object classes
print(f"Model loaded with {len(model.names)} classes: {model.names}")
# Assign random colors to each class for bounding boxes
colors = {i: [int(c) for c in np.random.randint(0, 255, 3)] for i in range(len(model.names))}
def detect_objects(image):
start_time = time.time() # Start FPS measurement
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(device) / 255.0
img_tensor = img_tensor.unsqueeze(0)
with torch.no_grad():
results = model(img_tensor)
detections = results.xyxy[0].cpu().numpy()
img_cv = image.copy()
for det in detections:
x1, y1, x2, y2, conf, cls = map(int, det[:6])
label = f"{model.names[cls]}: {conf:.2f}"
cv2.rectangle(img_cv, (x1, y1), (x2, y2), colors[cls], 2)
cv2.putText(img_cv, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[cls], 2)
# FPS Calculation
end_time = time.time()
fps = 1 / (end_time - start_time)
print(f"FPS: {fps:.2f}")
return img_cv
# Gradio interface
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title="Object Detection with YOLOv5",
description="Optimized for 30+ FPS real-time object detection!",
allow_flagging="never",
)
iface.launch()
|