File size: 9,299 Bytes
182c4ed
441f684
3776d99
 
 
 
73670cb
3776d99
a9a4e96
73670cb
 
441f684
 
 
 
 
 
 
 
73670cb
 
 
 
 
 
3776d99
441f684
3776d99
 
441f684
 
 
 
 
 
 
7e2ed99
3776d99
441f684
7e2ed99
3776d99
441f684
73670cb
441f684
73670cb
 
441f684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e2ed99
3776d99
441f684
 
 
 
 
 
 
3776d99
 
441f684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73670cb
441f684
73670cb
 
 
 
a9a4e96
73670cb
 
 
7e2ed99
441f684
73670cb
 
 
 
 
 
 
 
 
 
441f684
73670cb
441f684
 
 
73670cb
441f684
 
 
 
 
73670cb
 
 
 
 
 
 
441f684
 
73670cb
 
 
 
441f684
 
 
73670cb
 
 
441f684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73670cb
 
441f684
73670cb
 
 
441f684
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import joblib
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.nn import TransformerEncoder, TransformerEncoderLayer
import optuna
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import seaborn as sns

# Load and preprocess data
data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
joblib.dump(scaler, 'scaler.gz')

class BankNiftyDataset(Dataset):
    def __init__(self, data, seq_len, expiry_type, target_cols=['close']):
        self.data = data
        self.seq_len = seq_len
        self.expiry_type = expiry_type
        self.target_cols = target_cols

        if self.expiry_type == "weekly":
            self.filtered_data = data[data['Expiry'].str.contains("W")]
        elif self.expiry_type == "monthly":
            self.filtered_data = data[~data['Expiry'].str.contains("W")]

    def __len__(self):
        return len(self.filtered_data) - self.seq_len

    def __getitem__(self, idx):
        seq_data = self.filtered_data.iloc[idx:idx+self.seq_len]
        features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
        label = torch.tensor(seq_data[self.target_cols].iloc[-1].values, dtype=torch.float32)
        return features, label

class AdvancedModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, nhead=4, dropout=0.1):
        super(AdvancedModel, self).__init__()
        self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
        self.gru = nn.GRU(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
        
        encoder_layers = TransformerEncoderLayer(d_model=input_dim, nhead=nhead, dim_feedforward=hidden_dim, dropout=dropout)
        self.transformer = TransformerEncoder(encoder_layers, num_layers=num_layers)
        
        self.attention = nn.MultiheadAttention(hidden_dim, num_heads=nhead, dropout=dropout)
        
        self.fc = nn.Sequential(
            nn.Linear(hidden_dim * 3, hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, output_dim)
        )

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        gru_out, _ = self.gru(x)
        transformer_out = self.transformer(x.transpose(0, 1)).transpose(0, 1)
        
        combined = torch.cat((lstm_out[:, -1, :], gru_out[:, -1, :], transformer_out[:, -1, :]), dim=1)
        
        out = self.fc(combined)
        return out

def objective(trial):
    input_dim = 6
    hidden_dim = trial.suggest_int("hidden_dim", 64, 256)
    output_dim = len(target_cols)
    num_layers = trial.suggest_int("num_layers", 1, 4)
    nhead = trial.suggest_int("nhead", 2, 8)
    dropout = trial.suggest_float("dropout", 0.1, 0.5)
    lr = trial.suggest_loguniform("lr", 1e-5, 1e-2)
    
    model = AdvancedModel(input_dim, hidden_dim, output_dim, num_layers, nhead, dropout)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    criterion = nn.MSELoss()
    
    train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
    
    for epoch in range(10):  # Reduced epochs for faster optimization
        train_model(model, optimizer, criterion, train_loader)
        val_loss = evaluate_model(model, criterion, val_loader)
        
    return val_loss

def train_model(model, optimizer, criterion, train_loader):
    model.train()
    for batch in train_loader:
        features, label = batch
        optimizer.zero_grad()
        output = model(features)
        loss = criterion(output, label)
        loss.backward()
        optimizer.step()

def evaluate_model(model, criterion, val_loader):
    model.eval()
    total_loss = 0
    with torch.no_grad():
        for batch in val_loader:
            features, label = batch
            output = model(features)
            loss = criterion(output, label)
            total_loss += loss.item()
    return total_loss / len(val_loader)

def generate_strategy(model, expiry_type):
    model.eval()
    dataset = BankNiftyDataset(data, seq_len, expiry_type, target_cols)
    loader = DataLoader(dataset, batch_size=1, shuffle=False)

    with torch.no_grad():
        predictions = []
        for features, _ in loader:
            output = model(features)
            predictions.append(output.squeeze().tolist())
    return predictions

def retrain_model():
    new_data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
    new_scaled_data = scaler.transform(new_data[['open', 'high', 'low', 'close', 'volume', 'oi']])
    new_data[['open', 'high', 'low', 'close', 'volume', 'oi']] = new_scaled_data

    new_train_data, new_val_data = train_test_split(new_data, test_size=0.2, random_state=42)
    new_train_dataset = BankNiftyDataset(new_train_data, seq_len, "weekly", target_cols)
    new_val_dataset = BankNiftyDataset(new_val_data, seq_len, "weekly", target_cols)

    new_train_loader = DataLoader(new_train_dataset, batch_size=32, shuffle=True)
    new_val_loader = DataLoader(new_val_dataset, batch_size=32, shuffle=False)

    train_model(model, optimizer, criterion, new_train_loader)
    val_loss = evaluate_model(model, criterion, new_val_loader)
    print(f'Validation Loss after retraining: {val_loss:.4f}')

    torch.save(model.state_dict(), 'retrained_model.pth')

def plot_predictions(predictions, actual_values, title):
    plt.figure(figsize=(12, 6))
    plt.plot(predictions, label='Predictions')
    plt.plot(actual_values, label='Actual Values')
    plt.title(title)
    plt.xlabel('Time')
    plt.ylabel('Value')
    plt.legend()
    return plt

def display_strategies():
    weekly_predictions = generate_strategy(model, "weekly")
    monthly_predictions = generate_strategy(model, "monthly")
    
    weekly_actual = data[data['Expiry'].str.contains("W")][target_cols].values[-len(weekly_predictions):]
    monthly_actual = data[~data['Expiry'].str.contains("W")][target_cols].values[-len(monthly_predictions):]
    
    weekly_plot = plot_predictions(weekly_predictions, weekly_actual, "Weekly Expiry Predictions vs Actual")
    monthly_plot = plot_predictions(monthly_predictions, monthly_actual, "Monthly Expiry Predictions vs Actual")
    
    weekly_mse = mean_squared_error(weekly_actual, weekly_predictions)
    monthly_mse = mean_squared_error(monthly_actual, monthly_predictions)
    
    return (
        f"Weekly Expiry Strategy Predictions (MSE: {weekly_mse:.4f}):\n{weekly_predictions}\n\n"
        f"Monthly Expiry Strategy Predictions (MSE: {monthly_mse:.4f}):\n{monthly_predictions}",
        weekly_plot,
        monthly_plot
    )

# Hyperparameter optimization
target_cols = ['close', 'volume', 'oi']  # Predicting multiple targets
seq_len = 20  # Increased sequence length

train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
train_dataset = BankNiftyDataset(train_data, seq_len, "weekly", target_cols)
val_dataset = BankNiftyDataset(val_data, seq_len, "weekly", target_cols)

study = optuna.create_study(direction="minimize")
study.optimize(objective, n_trials=50)

best_params = study.best_params
print("Best hyperparameters:", best_params)

# Initialize the model with best parameters
input_dim = 6
output_dim = len(target_cols)
model = AdvancedModel(input_dim, best_params['hidden_dim'], output_dim, best_params['num_layers'], best_params['nhead'], best_params['dropout'])
optimizer = optim.Adam(model.parameters(), lr=best_params['lr'])
criterion = nn.MSELoss()

# Learning rate scheduler
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True)

# Training loop
num_epochs = 100
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

for epoch in range(num_epochs):
    train_model(model, optimizer, criterion, train_loader)
    val_loss = evaluate_model(model, criterion, val_loader)
    scheduler.step(val_loss)
    print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")

# Save the final model
torch.save(model.state_dict(), 'final_model.pth')

# Scheduler for automatic retraining
scheduler = BackgroundScheduler()
scheduler.add_job(retrain_model, 'interval', hours=1)
scheduler.start()

# Gradio interface
iface = gr.Interface(
    fn=display_strategies,
    inputs=None,
    outputs=[
        gr.Textbox(label="Strategy Predictions"),
        gr.Plot(label="Weekly Expiry Predictions"),
        gr.Plot(label="Monthly Expiry Predictions")
    ],
    title="Advanced BankNifty Option Chain Strategy Generator",
    description="This model predicts close price, volume, and open interest for weekly and monthly expiries."
)

iface.launch()