Spaces:
Sleeping
Sleeping
File size: 9,299 Bytes
182c4ed 441f684 3776d99 73670cb 3776d99 a9a4e96 73670cb 441f684 73670cb 3776d99 441f684 3776d99 441f684 7e2ed99 3776d99 441f684 7e2ed99 3776d99 441f684 73670cb 441f684 73670cb 441f684 7e2ed99 3776d99 441f684 3776d99 441f684 73670cb 441f684 73670cb a9a4e96 73670cb 7e2ed99 441f684 73670cb 441f684 73670cb 441f684 73670cb 441f684 73670cb 441f684 73670cb 441f684 73670cb 441f684 73670cb 441f684 73670cb 441f684 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import joblib
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.nn import TransformerEncoder, TransformerEncoderLayer
import optuna
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import seaborn as sns
# Load and preprocess data
data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
joblib.dump(scaler, 'scaler.gz')
class BankNiftyDataset(Dataset):
def __init__(self, data, seq_len, expiry_type, target_cols=['close']):
self.data = data
self.seq_len = seq_len
self.expiry_type = expiry_type
self.target_cols = target_cols
if self.expiry_type == "weekly":
self.filtered_data = data[data['Expiry'].str.contains("W")]
elif self.expiry_type == "monthly":
self.filtered_data = data[~data['Expiry'].str.contains("W")]
def __len__(self):
return len(self.filtered_data) - self.seq_len
def __getitem__(self, idx):
seq_data = self.filtered_data.iloc[idx:idx+self.seq_len]
features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
label = torch.tensor(seq_data[self.target_cols].iloc[-1].values, dtype=torch.float32)
return features, label
class AdvancedModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, nhead=4, dropout=0.1):
super(AdvancedModel, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
self.gru = nn.GRU(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
encoder_layers = TransformerEncoderLayer(d_model=input_dim, nhead=nhead, dim_feedforward=hidden_dim, dropout=dropout)
self.transformer = TransformerEncoder(encoder_layers, num_layers=num_layers)
self.attention = nn.MultiheadAttention(hidden_dim, num_heads=nhead, dropout=dropout)
self.fc = nn.Sequential(
nn.Linear(hidden_dim * 3, hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, output_dim)
)
def forward(self, x):
lstm_out, _ = self.lstm(x)
gru_out, _ = self.gru(x)
transformer_out = self.transformer(x.transpose(0, 1)).transpose(0, 1)
combined = torch.cat((lstm_out[:, -1, :], gru_out[:, -1, :], transformer_out[:, -1, :]), dim=1)
out = self.fc(combined)
return out
def objective(trial):
input_dim = 6
hidden_dim = trial.suggest_int("hidden_dim", 64, 256)
output_dim = len(target_cols)
num_layers = trial.suggest_int("num_layers", 1, 4)
nhead = trial.suggest_int("nhead", 2, 8)
dropout = trial.suggest_float("dropout", 0.1, 0.5)
lr = trial.suggest_loguniform("lr", 1e-5, 1e-2)
model = AdvancedModel(input_dim, hidden_dim, output_dim, num_layers, nhead, dropout)
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.MSELoss()
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
for epoch in range(10): # Reduced epochs for faster optimization
train_model(model, optimizer, criterion, train_loader)
val_loss = evaluate_model(model, criterion, val_loader)
return val_loss
def train_model(model, optimizer, criterion, train_loader):
model.train()
for batch in train_loader:
features, label = batch
optimizer.zero_grad()
output = model(features)
loss = criterion(output, label)
loss.backward()
optimizer.step()
def evaluate_model(model, criterion, val_loader):
model.eval()
total_loss = 0
with torch.no_grad():
for batch in val_loader:
features, label = batch
output = model(features)
loss = criterion(output, label)
total_loss += loss.item()
return total_loss / len(val_loader)
def generate_strategy(model, expiry_type):
model.eval()
dataset = BankNiftyDataset(data, seq_len, expiry_type, target_cols)
loader = DataLoader(dataset, batch_size=1, shuffle=False)
with torch.no_grad():
predictions = []
for features, _ in loader:
output = model(features)
predictions.append(output.squeeze().tolist())
return predictions
def retrain_model():
new_data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
new_scaled_data = scaler.transform(new_data[['open', 'high', 'low', 'close', 'volume', 'oi']])
new_data[['open', 'high', 'low', 'close', 'volume', 'oi']] = new_scaled_data
new_train_data, new_val_data = train_test_split(new_data, test_size=0.2, random_state=42)
new_train_dataset = BankNiftyDataset(new_train_data, seq_len, "weekly", target_cols)
new_val_dataset = BankNiftyDataset(new_val_data, seq_len, "weekly", target_cols)
new_train_loader = DataLoader(new_train_dataset, batch_size=32, shuffle=True)
new_val_loader = DataLoader(new_val_dataset, batch_size=32, shuffle=False)
train_model(model, optimizer, criterion, new_train_loader)
val_loss = evaluate_model(model, criterion, new_val_loader)
print(f'Validation Loss after retraining: {val_loss:.4f}')
torch.save(model.state_dict(), 'retrained_model.pth')
def plot_predictions(predictions, actual_values, title):
plt.figure(figsize=(12, 6))
plt.plot(predictions, label='Predictions')
plt.plot(actual_values, label='Actual Values')
plt.title(title)
plt.xlabel('Time')
plt.ylabel('Value')
plt.legend()
return plt
def display_strategies():
weekly_predictions = generate_strategy(model, "weekly")
monthly_predictions = generate_strategy(model, "monthly")
weekly_actual = data[data['Expiry'].str.contains("W")][target_cols].values[-len(weekly_predictions):]
monthly_actual = data[~data['Expiry'].str.contains("W")][target_cols].values[-len(monthly_predictions):]
weekly_plot = plot_predictions(weekly_predictions, weekly_actual, "Weekly Expiry Predictions vs Actual")
monthly_plot = plot_predictions(monthly_predictions, monthly_actual, "Monthly Expiry Predictions vs Actual")
weekly_mse = mean_squared_error(weekly_actual, weekly_predictions)
monthly_mse = mean_squared_error(monthly_actual, monthly_predictions)
return (
f"Weekly Expiry Strategy Predictions (MSE: {weekly_mse:.4f}):\n{weekly_predictions}\n\n"
f"Monthly Expiry Strategy Predictions (MSE: {monthly_mse:.4f}):\n{monthly_predictions}",
weekly_plot,
monthly_plot
)
# Hyperparameter optimization
target_cols = ['close', 'volume', 'oi'] # Predicting multiple targets
seq_len = 20 # Increased sequence length
train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
train_dataset = BankNiftyDataset(train_data, seq_len, "weekly", target_cols)
val_dataset = BankNiftyDataset(val_data, seq_len, "weekly", target_cols)
study = optuna.create_study(direction="minimize")
study.optimize(objective, n_trials=50)
best_params = study.best_params
print("Best hyperparameters:", best_params)
# Initialize the model with best parameters
input_dim = 6
output_dim = len(target_cols)
model = AdvancedModel(input_dim, best_params['hidden_dim'], output_dim, best_params['num_layers'], best_params['nhead'], best_params['dropout'])
optimizer = optim.Adam(model.parameters(), lr=best_params['lr'])
criterion = nn.MSELoss()
# Learning rate scheduler
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True)
# Training loop
num_epochs = 100
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
for epoch in range(num_epochs):
train_model(model, optimizer, criterion, train_loader)
val_loss = evaluate_model(model, criterion, val_loader)
scheduler.step(val_loss)
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
# Save the final model
torch.save(model.state_dict(), 'final_model.pth')
# Scheduler for automatic retraining
scheduler = BackgroundScheduler()
scheduler.add_job(retrain_model, 'interval', hours=1)
scheduler.start()
# Gradio interface
iface = gr.Interface(
fn=display_strategies,
inputs=None,
outputs=[
gr.Textbox(label="Strategy Predictions"),
gr.Plot(label="Weekly Expiry Predictions"),
gr.Plot(label="Monthly Expiry Predictions")
],
title="Advanced BankNifty Option Chain Strategy Generator",
description="This model predicts close price, volume, and open interest for weekly and monthly expiries."
)
iface.launch() |