BN / app.py
Avinash109's picture
Update app.py
441f684 verified
raw
history blame
9.3 kB
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import joblib
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.nn import TransformerEncoder, TransformerEncoderLayer
import optuna
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import seaborn as sns
# Load and preprocess data
data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
joblib.dump(scaler, 'scaler.gz')
class BankNiftyDataset(Dataset):
def __init__(self, data, seq_len, expiry_type, target_cols=['close']):
self.data = data
self.seq_len = seq_len
self.expiry_type = expiry_type
self.target_cols = target_cols
if self.expiry_type == "weekly":
self.filtered_data = data[data['Expiry'].str.contains("W")]
elif self.expiry_type == "monthly":
self.filtered_data = data[~data['Expiry'].str.contains("W")]
def __len__(self):
return len(self.filtered_data) - self.seq_len
def __getitem__(self, idx):
seq_data = self.filtered_data.iloc[idx:idx+self.seq_len]
features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
label = torch.tensor(seq_data[self.target_cols].iloc[-1].values, dtype=torch.float32)
return features, label
class AdvancedModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, nhead=4, dropout=0.1):
super(AdvancedModel, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
self.gru = nn.GRU(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
encoder_layers = TransformerEncoderLayer(d_model=input_dim, nhead=nhead, dim_feedforward=hidden_dim, dropout=dropout)
self.transformer = TransformerEncoder(encoder_layers, num_layers=num_layers)
self.attention = nn.MultiheadAttention(hidden_dim, num_heads=nhead, dropout=dropout)
self.fc = nn.Sequential(
nn.Linear(hidden_dim * 3, hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, output_dim)
)
def forward(self, x):
lstm_out, _ = self.lstm(x)
gru_out, _ = self.gru(x)
transformer_out = self.transformer(x.transpose(0, 1)).transpose(0, 1)
combined = torch.cat((lstm_out[:, -1, :], gru_out[:, -1, :], transformer_out[:, -1, :]), dim=1)
out = self.fc(combined)
return out
def objective(trial):
input_dim = 6
hidden_dim = trial.suggest_int("hidden_dim", 64, 256)
output_dim = len(target_cols)
num_layers = trial.suggest_int("num_layers", 1, 4)
nhead = trial.suggest_int("nhead", 2, 8)
dropout = trial.suggest_float("dropout", 0.1, 0.5)
lr = trial.suggest_loguniform("lr", 1e-5, 1e-2)
model = AdvancedModel(input_dim, hidden_dim, output_dim, num_layers, nhead, dropout)
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.MSELoss()
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
for epoch in range(10): # Reduced epochs for faster optimization
train_model(model, optimizer, criterion, train_loader)
val_loss = evaluate_model(model, criterion, val_loader)
return val_loss
def train_model(model, optimizer, criterion, train_loader):
model.train()
for batch in train_loader:
features, label = batch
optimizer.zero_grad()
output = model(features)
loss = criterion(output, label)
loss.backward()
optimizer.step()
def evaluate_model(model, criterion, val_loader):
model.eval()
total_loss = 0
with torch.no_grad():
for batch in val_loader:
features, label = batch
output = model(features)
loss = criterion(output, label)
total_loss += loss.item()
return total_loss / len(val_loader)
def generate_strategy(model, expiry_type):
model.eval()
dataset = BankNiftyDataset(data, seq_len, expiry_type, target_cols)
loader = DataLoader(dataset, batch_size=1, shuffle=False)
with torch.no_grad():
predictions = []
for features, _ in loader:
output = model(features)
predictions.append(output.squeeze().tolist())
return predictions
def retrain_model():
new_data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
new_scaled_data = scaler.transform(new_data[['open', 'high', 'low', 'close', 'volume', 'oi']])
new_data[['open', 'high', 'low', 'close', 'volume', 'oi']] = new_scaled_data
new_train_data, new_val_data = train_test_split(new_data, test_size=0.2, random_state=42)
new_train_dataset = BankNiftyDataset(new_train_data, seq_len, "weekly", target_cols)
new_val_dataset = BankNiftyDataset(new_val_data, seq_len, "weekly", target_cols)
new_train_loader = DataLoader(new_train_dataset, batch_size=32, shuffle=True)
new_val_loader = DataLoader(new_val_dataset, batch_size=32, shuffle=False)
train_model(model, optimizer, criterion, new_train_loader)
val_loss = evaluate_model(model, criterion, new_val_loader)
print(f'Validation Loss after retraining: {val_loss:.4f}')
torch.save(model.state_dict(), 'retrained_model.pth')
def plot_predictions(predictions, actual_values, title):
plt.figure(figsize=(12, 6))
plt.plot(predictions, label='Predictions')
plt.plot(actual_values, label='Actual Values')
plt.title(title)
plt.xlabel('Time')
plt.ylabel('Value')
plt.legend()
return plt
def display_strategies():
weekly_predictions = generate_strategy(model, "weekly")
monthly_predictions = generate_strategy(model, "monthly")
weekly_actual = data[data['Expiry'].str.contains("W")][target_cols].values[-len(weekly_predictions):]
monthly_actual = data[~data['Expiry'].str.contains("W")][target_cols].values[-len(monthly_predictions):]
weekly_plot = plot_predictions(weekly_predictions, weekly_actual, "Weekly Expiry Predictions vs Actual")
monthly_plot = plot_predictions(monthly_predictions, monthly_actual, "Monthly Expiry Predictions vs Actual")
weekly_mse = mean_squared_error(weekly_actual, weekly_predictions)
monthly_mse = mean_squared_error(monthly_actual, monthly_predictions)
return (
f"Weekly Expiry Strategy Predictions (MSE: {weekly_mse:.4f}):\n{weekly_predictions}\n\n"
f"Monthly Expiry Strategy Predictions (MSE: {monthly_mse:.4f}):\n{monthly_predictions}",
weekly_plot,
monthly_plot
)
# Hyperparameter optimization
target_cols = ['close', 'volume', 'oi'] # Predicting multiple targets
seq_len = 20 # Increased sequence length
train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
train_dataset = BankNiftyDataset(train_data, seq_len, "weekly", target_cols)
val_dataset = BankNiftyDataset(val_data, seq_len, "weekly", target_cols)
study = optuna.create_study(direction="minimize")
study.optimize(objective, n_trials=50)
best_params = study.best_params
print("Best hyperparameters:", best_params)
# Initialize the model with best parameters
input_dim = 6
output_dim = len(target_cols)
model = AdvancedModel(input_dim, best_params['hidden_dim'], output_dim, best_params['num_layers'], best_params['nhead'], best_params['dropout'])
optimizer = optim.Adam(model.parameters(), lr=best_params['lr'])
criterion = nn.MSELoss()
# Learning rate scheduler
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True)
# Training loop
num_epochs = 100
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
for epoch in range(num_epochs):
train_model(model, optimizer, criterion, train_loader)
val_loss = evaluate_model(model, criterion, val_loader)
scheduler.step(val_loss)
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
# Save the final model
torch.save(model.state_dict(), 'final_model.pth')
# Scheduler for automatic retraining
scheduler = BackgroundScheduler()
scheduler.add_job(retrain_model, 'interval', hours=1)
scheduler.start()
# Gradio interface
iface = gr.Interface(
fn=display_strategies,
inputs=None,
outputs=[
gr.Textbox(label="Strategy Predictions"),
gr.Plot(label="Weekly Expiry Predictions"),
gr.Plot(label="Monthly Expiry Predictions")
],
title="Advanced BankNifty Option Chain Strategy Generator",
description="This model predicts close price, volume, and open interest for weekly and monthly expiries."
)
iface.launch()