|
import gradio as gr |
|
import openai |
|
|
|
|
|
openai.api_key = "YOUR_API_KEY" |
|
|
|
|
|
def respond_to_message(message, chat_history): |
|
response = openai.ChatCompletion.create( |
|
model="gpt-3.5-turbo", |
|
messages=[{"role": "user", "content": message}] |
|
) |
|
bot_message = response.choices[0].message['content'] |
|
chat_history.append((message, bot_message)) |
|
return "", chat_history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
chatbot = gr.Chatbot(label="AI चैट बोर्ड") |
|
msg = gr.Textbox(label="आपका मैसेज") |
|
clear = gr.ClearButton([msg, chatbot]) |
|
|
|
msg.submit(respond_to_message, [msg, chatbot], [msg, chatbot]) |
|
|
|
demo.launch() |
|
|
|
|
|
from datasets import load_dataset |
|
|
|
|
|
ds = load_dataset("KadamParth/NCERT_Chemistry_11th") |
|
|
|
from transformers import OpenAIGPTTokenizer, TFOpenAIGPTModel |
|
|
|
tokenizer = OpenAIGPTTokenizer.from_pretrained("openai-community/openai-gpt") |
|
model = TFOpenAIGPTModel.from_pretrained("openai-community/openai-gpt") |
|
|
|
from transformers import OpenAIGPTTokenizer |
|
import pandas as pd |
|
|
|
|
|
df = pd.read_csv("your_dataset.csv") |
|
|
|
|
|
tokenizer = OpenAIGPTTokenizer.from_pretrained("openai-community/openai-gpt") |
|
|
|
|
|
question = "रासायनिक बंध क्या होता है?" |
|
|
|
|
|
def get_answer(question): |
|
for idx, row in df.iterrows(): |
|
if question.lower() in row['question'].lower(): |
|
return row['answer'] |
|
return "जवाब नहीं मिला।" |
|
|
|
answer = get_answer(question) |
|
print(answer) |
|
|