Spaces:
Sleeping
Sleeping
File size: 2,614 Bytes
0318caf d35c879 0318caf d5a8216 0318caf d5a8216 0318caf d35c879 b307974 d35c879 d5a8216 0318caf d5a8216 b307974 0318caf d35c879 b307974 d35c879 b307974 0318caf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain.memory import ConversationBufferMemory
# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""
# # Define the prompt template
# prompt = PromptTemplate(
# input_variables=["chat_history", "user_message"],
# template=template
# )
# # Initialize conversation memory
# memory = ConversationBufferMemory(memory_key="chat_history")
# # Define the LLM chain with the ChatOpenAI model and conversation memory
# llm_chain = LLMChain(
# llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
# prompt=prompt,
# verbose=True,
# memory=memory,
# )
# # Function to get chatbot response
# def get_text_response(user_message, history):
# response = llm_chain.predict(user_message=user_message)
# return response
# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
# if __name__ == "__main__":
# demo.launch()
import os
import gradio as gr
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.schema import BaseMemory
from langchain.memory import ConversationBufferMemory
from langchain.chains import RunnableSequence
# Set OpenAI API Key
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# Define the template for the chatbot's response
template = """You are a helpful assistant to answer all user queries.
{chat_history}
User: {user_message}
Chatbot:"""
# Define the prompt template
prompt = PromptTemplate(
input_variables=["chat_history", "user_message"],
template=template
)
# Initialize conversation memory
memory = ConversationBufferMemory(memory_key="chat_history")
# Define the LLM (language model)
llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
# Define the chain using RunnableSequence (replace LLMChain)
llm_chain = prompt | llm # Chaining the prompt and the LLM
# Function to get chatbot response
def get_text_response(user_message, history):
inputs = {"chat_history": history, "user_message": user_message}
response = llm_chain(inputs)
return response['text']
# Create a Gradio chat interface
demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
if __name__ == "__main__":
demo.launch()
|