Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,181 Bytes
e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 cc49c73 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 cc49c73 c2640c7 22d96d3 e7621f8 33f355d 22d96d3 e7621f8 33f355d 22d96d3 e7621f8 c2640c7 e7621f8 cc49c73 22d96d3 e7621f8 22d96d3 c2640c7 cc49c73 c2640c7 22d96d3 0fc14ac cc49c73 22d96d3 cc49c73 22d96d3 cc49c73 4588e7b 22d96d3 cc49c73 e7621f8 22d96d3 cc49c73 22d96d3 cc49c73 f8f20d3 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 c2640c7 22d96d3 e7621f8 c2640c7 22d96d3 e7621f8 22d96d3 4588e7b e7621f8 4588e7b cc49c73 22d96d3 cc49c73 22d96d3 cc49c73 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 cc49c73 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 c2640c7 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 c2640c7 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 e7621f8 22d96d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# app.py — ShortiFoley (Video -> Foley)
# Created by bilsimaging.com
import os
import sys
import io
import json
import uuid
import time
import shutil
import base64
import random
import tempfile
import datetime
from pathlib import Path
from typing import List, Optional, Tuple, Dict
import numpy as np
import torch
import torchaudio
import gradio as gr
from loguru import logger
from huggingface_hub import snapshot_download
import spaces # HF Spaces ZeroGPU & MCP integration
# -------------------------
# Constants & configuration
# -------------------------
ROOT = Path(__file__).parent.resolve()
REPO_DIR = ROOT / "HunyuanVideo-Foley"
WEIGHTS_DIR = Path(os.environ.get("HIFI_FOLEY_MODEL_PATH", str(ROOT / "weights")))
CONFIG_PATH = Path(os.environ.get("HIFI_FOLEY_CONFIG", str(REPO_DIR / "configs" / "hunyuanvideo-foley-xxl.yaml")))
OUTPUTS_DIR = Path(os.environ.get("OUTPUTS_DIR", str(ROOT / "outputs")))
OUTPUTS_DIR.mkdir(parents=True, exist_ok=True)
SPACE_TITLE = "🎵 ShortiFoley — HunyuanVideo-Foley"
SPACE_TAGLINE = "Text/Video → Audio Foley. Created by bilsimaging.com"
WATERMARK_NOTE = "Made with ❤️ by bilsimaging.com"
# Keep GPU <= 120s for ZeroGPU (default 110)
GPU_DURATION = int(os.environ.get("GPU_DURATION_SECS", "110"))
# Globals
_model_dict = None
_cfg = None
_device: Optional[torch.device] = None
# ------------
# Small helpers
# ------------
def _setup_device(pref: str = "auto", gpu_id: int = 0) -> torch.device:
"""Pick CUDA if available, else MPS, else CPU."""
if pref == "auto":
if torch.cuda.is_available():
d = torch.device(f"cuda:{gpu_id}")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
d = torch.device("mps")
else:
d = torch.device("cpu")
else:
d = torch.device(pref)
logger.info(f"Using CUDA {d}" if d.type == "cuda" else f"Using {d}")
return d
def _ensure_repo() -> None:
"""Shallow-clone Tencent repo with LFS smudge disabled (avoid LFS quota checkout)."""
if REPO_DIR.exists():
return
cmd = (
"GIT_LFS_SKIP_SMUDGE=1 "
"git -c filter.lfs.smudge= -c filter.lfs.required=false "
f"clone --depth 1 https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley.git {REPO_DIR}"
)
logger.info(f">> {cmd}")
os.system(cmd)
def _download_weights_if_needed() -> None:
"""Snapshot only needed files from HF weights/model hub."""
WEIGHTS_DIR.mkdir(parents=True, exist_ok=True)
snapshot_download(
repo_id="tencent/HunyuanVideo-Foley",
local_dir=str(WEIGHTS_DIR),
resume_download=True,
allow_patterns=[
"hunyuanvideo_foley.pth",
"synchformer_state_dict.pth",
"vae_128d_48k.pth",
"assets/*",
"config.yaml", # harmless
],
)
def prepare_once() -> None:
_ensure_repo()
_download_weights_if_needed()
# -----------------------
# Model load & inference
# -----------------------
def auto_load_models() -> str:
"""
Load HunyuanVideo-Foley + encoders on the chosen device.
"""
global _model_dict, _cfg, _device
if _model_dict is not None and _cfg is not None:
return "Model already loaded."
sys.path.append(str(REPO_DIR))
from hunyuanvideo_foley.utils.model_utils import load_model
_device = _setup_device("auto", 0)
logger.info("Loading HunyuanVideo-Foley model...")
logger.info(f"MODEL_PATH: {WEIGHTS_DIR}")
logger.info(f"CONFIG_PATH: {CONFIG_PATH}")
try:
_model_dict, _cfg = load_model(str(WEIGHTS_DIR), str(CONFIG_PATH), _device)
return "✅ Model loaded."
except Exception as e:
logger.error(e)
return f"❌ Failed to load model: {e}"
def _merge_audio_video(audio_path: str, video_path: str, out_path: str) -> None:
"""Use project's helper (preferred) with a fallback to ffmpeg via subprocess."""
sys.path.append(str(REPO_DIR))
try:
from hunyuanvideo_foley.utils.media_utils import merge_audio_video
merge_audio_video(audio_path, video_path, out_path)
except Exception as e:
# Fallback: plain ffmpeg merge (assumes same duration or lets ffmpeg handle)
logger.warning(f"merge_audio_video failed, falling back to ffmpeg: {e}")
import subprocess
cmd = [
"ffmpeg", "-y",
"-i", video_path,
"-i", audio_path,
"-c:v", "copy",
"-c:a", "aac",
"-shortest",
out_path
]
subprocess.run(cmd, check=True)
def _save_outputs(video_src: str, audio_tensor: torch.Tensor, sr: int, idx: int,
prompt: str) -> str:
"""Save WAV + MP4 in outputs/, add metadata and a small watermark note (metadata only)."""
# torchaudio expects [C, N]
if audio_tensor.ndim == 1:
audio_tensor = audio_tensor.unsqueeze(0)
tmpdir = Path(tempfile.mkdtemp())
wav_path = tmpdir / f"gen_{idx}.wav"
torchaudio.save(str(wav_path), audio_tensor.cpu(), sr)
ts = datetime.datetime.utcnow().strftime("%Y%m%d_%H%M%S_%f")
base = f"shortifoley_{ts}_{idx}"
out_mp4 = OUTPUTS_DIR / f"{base}.mp4"
_merge_audio_video(str(wav_path), video_src, str(out_mp4))
# Save JSON sidecar
meta = {
"id": base,
"created_utc": datetime.datetime.utcnow().isoformat() + "Z",
"source_video": Path(video_src).name,
"output_video": Path(out_mp4).name,
"prompt": prompt or "",
"watermark": WATERMARK_NOTE,
"tool": "ShortiFoley (HunyuanVideo-Foley)"
}
(OUTPUTS_DIR / f"{base}.json").write_text(json.dumps(meta, ensure_ascii=False, indent=2))
return str(out_mp4)
def _list_gallery(limit: int = 100) -> List[str]:
vids = []
for p in sorted(OUTPUTS_DIR.glob("*.mp4"), key=lambda x: x.stat().st_mtime, reverse=True):
vids.append(str(p))
if len(vids) >= limit:
break
return vids
# ================
# Inference kernel
# ================
@spaces.GPU(duration=GPU_DURATION)
@torch.inference_mode()
def infer_single_video(
video_file: str,
text_prompt: str,
guidance_scale: float = 4.5,
num_inference_steps: int = 50,
sample_nums: int = 1,
) -> Tuple[List[str], str]:
"""
Generate Foley audio for an uploaded video (1–6 variants).
Returns: (list of output video paths, status message)
"""
if _model_dict is None or _cfg is None:
return [], "❌ Load the model first (open the app once)."
if not video_file:
return [], "❌ Please provide a video."
sys.path.append(str(REPO_DIR))
from hunyuanvideo_foley.utils.feature_utils import feature_process
from hunyuanvideo_foley.utils.model_utils import denoise_process
# preprocess
visual_feats, text_feats, audio_len_s = feature_process(
video_file, (text_prompt or "").strip(), _model_dict, _cfg
)
# generate batch
n = int(max(1, min(6, sample_nums)))
audio, sr = denoise_process(
visual_feats,
text_feats,
audio_len_s,
_model_dict,
_cfg,
guidance_scale=float(guidance_scale),
num_inference_steps=int(num_inference_steps),
batch_size=n,
)
# save results
outs = []
for i in range(n):
outs.append(_save_outputs(video_file, audio[i], sr, i + 1, text_prompt or ""))
return outs, f"✅ Generated {len(outs)} result(s). Saved to {OUTPUTS_DIR}/"
# ---------------
# MCP-only APIs
# ---------------
def _download_to_tmp(url: str) -> str:
"""Download a remote file to temp."""
try:
import requests
except Exception:
raise RuntimeError("Missing dependency 'requests'. Add it to requirements.txt to use URL inputs.")
r = requests.get(url, timeout=30)
r.raise_for_status()
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
tmp.write(r.content)
tmp.flush()
tmp.close()
return tmp.name
def _maybe_from_base64(data_url_or_b64: str) -> str:
"""Accept data: URLs or raw base64; returns temp file path."""
b64 = data_url_or_b64
if data_url_or_b64.startswith("data:"):
b64 = data_url_or_b64.split(",", 1)[-1]
raw = base64.b64decode(b64)
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
tmp.write(raw)
tmp.flush()
tmp.close()
return tmp.name
def _normalize_video_input(video_url_or_b64: str) -> str:
v = (video_url_or_b64 or "").strip()
if v.startswith("http://") or v.startswith("https://"):
return _download_to_tmp(v)
return _maybe_from_base64(v)
with gr.Blocks() as mcp_only_endpoints:
gr.Markdown("These endpoints are MCP/API only and have no visible UI.", show_label=False)
@gr.api
def api_generate_from_url(
video_url_or_b64: str,
text_prompt: str = "",
guidance_scale: float = 4.5,
num_inference_steps: int = 50,
sample_nums: int = 1,
) -> Dict[str, List[str]]:
"""
Generate Foley from a remote video URL or base64-encoded video.
Returns: {"videos": [paths], "message": str}
"""
if _model_dict is None or _cfg is None:
raise RuntimeError("Model not loaded. Open the UI once or call /load_model tool.")
local = _normalize_video_input(video_url_or_b64)
outs, msg = infer_single_video(local, text_prompt, guidance_scale, num_inference_steps, sample_nums)
return {"videos": outs, "message": msg}
@gr.api
def load_model_tool() -> str:
"""Ensure model is loaded on server (MCP convenience)."""
return auto_load_models()
@gr.mcp.resource("shortifoley://status")
def shortifoley_status() -> str:
"""Return a simple readiness string for MCP clients."""
ready = _model_dict is not None and _cfg is not None
dev = "cuda" if (_device and _device.type == "cuda") else ("mps" if (_device and _device.type == "mps") else "cpu")
return f"ShortiFoley status: {'ready' if ready else 'loading'} | device={dev} | outputs={OUTPUTS_DIR}"
@gr.mcp.prompt()
def foley_prompt(name: str = "default") -> str:
"""Reusable guidance for describing sound ambience."""
return (
"Describe the expected environmental sound precisely. Mention material, rhythm, intensity, and ambience.\n"
"Example: 'Soft leather footfalls on wet pavement with distant traffic hiss; occasional splashes.'"
)
# -------------
# Gradio UI
# -------------
def _about_html() -> str:
return f"""
<div style="line-height:1.6">
<h2>About ShortiFoley</h2>
<p><b>ShortiFoley</b> automatically generates realistic Foley soundtracks for short videos using
Tencent’s HunyuanVideo-Foley with CLAP & SigLIP2 encoders. It includes autosave and an MCP server so
you can call it from agents or workflows (e.g., n8n).</p>
<p><b>Created by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a></b></p>
<h3>How to use</h3>
<ol>
<li>Upload a video (ideally < 120 seconds).</li>
<li>Optionally enter a text description of the sound (English).</li>
<li>Adjust CFG scale, steps, and number of variants.</li>
<li>Click <b>Generate</b>. Results appear on the right and are stored in the Gallery.</li>
</ol>
<h3>Tips</h3>
<ul>
<li>Trim clips to the key action (5–30s) for faster, crisper results.</li>
<li>Include material cues (“wood”, “metal”, “concrete”), action cues (“splash”, “glass shatter”), and ambience (“roomy”, “echoey”).</li>
<li>Generate multiple variants and pick the most natural.</li>
</ul>
<h3>MCP / Automation</h3>
<p>This app runs as an <b>MCP server</b>. Open the footer “View API → MCP” to copy a ready config. You can also use the REST endpoints listed there. Perfect for n8n integrations.</p>
<h3>Watermark</h3>
<p>Each output’s metadata includes: <i>{WATERMARK_NOTE}</i>. If you want a <b>visible video overlay</b>, I can add an ffmpeg overlay step on request.</p>
</div>
"""
def create_ui() -> gr.Blocks:
with gr.Blocks(
title="ShortiFoley — HunyuanVideo-Foley",
css="""
.main-header{ text-align:center; padding:1.2rem; border-radius:16px; background:linear-gradient(135deg,#667eea,#764ba2); color:white; }
.card{ background:white; border:1px solid #e1e5e9; border-radius:16px; padding:1rem; box-shadow:0 8px 32px rgba(0,0,0,.06); }
.generate-btn button{ font-weight:700; }
"""
) as demo:
gr.HTML(f"<div class='main-header'><h1>{SPACE_TITLE}</h1><p>{SPACE_TAGLINE}</p></div>")
with gr.Tabs():
with gr.Tab("Run"):
with gr.Row():
with gr.Column(scale=1, elem_classes=["card"]):
gr.Markdown("### 📹 Input")
video_input = gr.Video(label="Upload Video", height=300)
text_input = gr.Textbox(
label="🎯 Audio Description (optional, English)",
placeholder="e.g., Rubber soles on wet tile, distant chatter.",
lines=3
)
with gr.Row():
guidance_scale = gr.Slider(1.0, 10.0, value=4.5, step=0.1, label="CFG Scale")
steps = gr.Slider(10, 100, value=50, step=5, label="Steps")
samples = gr.Slider(1, 6, value=1, step=1, label="Variants")
generate = gr.Button("🎵 Generate", variant="primary", elem_classes=["generate-btn"])
with gr.Column(scale=1, elem_classes=["card"]):
gr.Markdown("### 🎥 Result(s)")
v1 = gr.Video(label="Sample 1", height=260, visible=True)
v2 = gr.Video(label="Sample 2", height=160, visible=False)
v3 = gr.Video(label="Sample 3", height=160, visible=False)
v4 = gr.Video(label="Sample 4", height=160, visible=False)
v5 = gr.Video(label="Sample 5", height=160, visible=False)
v6 = gr.Video(label="Sample 6", height=160, visible=False)
status = gr.Textbox(label="Status", interactive=False)
# Generate handler
def _process_and_update(video_file, text_prompt, cfg, nsteps, nsamples):
outs, msg = infer_single_video(video_file, text_prompt, cfg, nsteps, nsamples)
vis_updates = []
for i in range(6):
if i < len(outs):
vis_updates.append(gr.update(visible=True, value=outs[i]))
else:
vis_updates.append(gr.update(visible=False, value=None))
gal_items = _list_gallery()
return (*vis_updates, msg, gr.update(value=gal_items))
generate.click(
fn=_process_and_update,
inputs=[video_input, text_input, guidance_scale, steps, samples],
outputs=[v1, v2, v3, v4, v5, v6, status, ],
api_name="/infer",
api_description="Generate Foley audio for an uploaded video. Returns up to 6 video+audio files."
)
# Toggle visibility when # of samples changes
def _toggle_vis(n):
n = int(n)
return [
gr.update(visible=True),
gr.update(visible=n >= 2),
gr.update(visible=n >= 3),
gr.update(visible=n >= 4),
gr.update(visible=n >= 5),
gr.update(visible=n >= 6),
]
samples.change(_toggle_vis, inputs=[samples], outputs=[v1, v2, v3, v4, v5, v6])
with gr.Tab("📁 Gallery"):
gr.Markdown("Latest generated videos (autosaved to `outputs/`).")
gallery = gr.Gallery(
value=_list_gallery(),
columns=3,
preview=True,
label="Saved Results"
)
refresh = gr.Button("🔄 Refresh Gallery")
refresh.click(lambda: gr.update(value=_list_gallery()), outputs=[gallery])
with gr.Tab("ℹ️ About"):
gr.HTML(_about_html())
# Also expose gallery update after generate
generate.click(lambda: gr.update(value=_list_gallery()), outputs=[gallery])
return demo
def set_seeds(s: int = 1):
random.seed(s)
np.random.seed(s)
torch.manual_seed(s)
# -------------
# App bootstrap
# -------------
if __name__ == "__main__":
logger.remove()
logger.add(lambda m: print(m, end=""), level="INFO")
set_seeds(1)
logger.info("===== Application Startup =====\n")
prepare_once()
# Ensure import paths after repo is present
sys.path.append(str(REPO_DIR))
try:
# Probe key modules early (better error surfacing)
from hunyuanvideo_foley.utils.model_utils import load_model, denoise_process # noqa: F401
from hunyuanvideo_foley.utils.feature_utils import feature_process # noqa: F401
from hunyuanvideo_foley.utils.media_utils import merge_audio_video # noqa: F401
except Exception as e:
logger.warning(f"Repo imports not ready yet: {e}")
msg = auto_load_models()
if not msg.startswith("✅"):
logger.error(f"[BOOT][ERROR] auto_load_models() failed:\n{msg}")
else:
logger.info(msg)
ui = create_ui()
# Mount MCP-only endpoints alongside the UI
ui.blocks.append(mcp_only_endpoints)
# Enable MCP server so tools/resources/prompts are discoverable
ui.launch(
server_name="0.0.0.0",
share=False,
show_error=True,
mcp_server=True, # MCP on
)
|