File size: 16,024 Bytes
d707455
 
3c67c1b
d707455
c39747a
d707455
91c3d7f
 
d707455
58fb3b6
08b2694
c39747a
3c67c1b
c39747a
4e07134
db6dfb3
4e07134
3c67c1b
c39747a
 
8957ac0
 
 
 
5a18d45
8957ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c39747a
3c67c1b
 
 
 
 
 
 
 
6080190
3c67c1b
 
 
 
 
 
 
d6529a6
3c67c1b
 
 
 
 
 
8957ac0
 
2820156
c39747a
8957ac0
 
 
 
 
 
 
3c67c1b
8957ac0
3c67c1b
c39747a
 
 
 
 
 
 
 
 
 
 
3c67c1b
c39747a
 
 
 
3c67c1b
c39747a
 
 
e9e9f4c
c39747a
 
 
e9e9f4c
2820156
 
 
 
 
e9e9f4c
c39747a
3c67c1b
 
08b2694
 
58fb3b6
12da302
c39747a
3c67c1b
c3039ab
c39747a
 
 
 
d707455
58fb3b6
083533c
b948611
 
 
 
083533c
c39747a
3c67c1b
 
 
 
 
 
 
bd9c01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b948611
3c67c1b
 
bc2c7d0
1ce0089
3c67c1b
c39747a
3c67c1b
 
 
 
39d75ee
3c67c1b
 
 
 
 
 
 
 
c39747a
3c67c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e9f4c
3c67c1b
9e7da33
 
 
 
 
e9e9f4c
 
 
 
 
 
795eab8
4d41b2b
ce53185
6125674
 
d0a2375
795eab8
62dd932
 
d0a2375
62dd932
 
 
d0a2375
795eab8
 
 
 
 
 
 
cb7e6f4
12bf69a
cb7e6f4
 
 
58fb3b6
 
 
cb7e6f4
 
 
 
 
58fb3b6
cb7e6f4
 
 
 
 
 
12bf69a
58fb3b6
20087cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e9f4c
3c67c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58fb3b6
20d01cc
791aa72
 
 
 
 
 
 
 
 
 
3c67c1b
791aa72
 
 
 
 
3c67c1b
791aa72
3c67c1b
 
 
 
 
 
13f6bbc
3c67c1b
1b02b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c67c1b
1b02b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c67c1b
1b02b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c67c1b
1b02b65
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import requests
import pandas as pd
import numpy as np
import streamlit as st
import matplotlib
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Custom CSS 
st.markdown("""
    <style>
          
        .main {
            background-color: #1A1A1A !important;  /* dark */
            color: #D3D3D3 !important;
        }

        }
        .block-container {
            background-color: #D3D3D3 !important;
            color: #cccccc !important;
            padding-left: 3rem !important;
            padding-right: 3rem !important;
            max-width: 900px;  /* widen main feed */
            margin: auto;  /* center it */
        }
        /* Headings */
        h1, h2, h3, h4 {
            color: #eeeeee !important; /* brighter light gray for headings */
            font-weight: 700 !important; /* bold */
            margin-bottom: 1rem !important;
        }
        p, span, div {
            color: #cccccc !important;
        }
        /* Subheaders (optional) */
        .stSubheader {
            color: #dddddd !important;
            font-size: 1.4rem !important;
        }
        /* Dataframes (optional tweak) */
        .stDataFrame {
            background-color: #2e2e2e !important;
            border-radius: 10px;
            padding: 1rem;
        }
        section[data-testid="stSidebar"] > div:first-child {
            background-color: #808080 !important;
            padding: 1rem;
            border-radius: 0.5rem;
            color: #808080 !important;
        }
        .stMarkdown, .stTextInput, .stDataFrame {
            color: #1A1A1A!important;
        }
        img.banner {
            width: 100%;
            border-radius: 12px;
            margin-bottom: 1rem;
        }
                                 .stAlert {
            background-color: #f0f0f5 !important;
            color: #1A1A1A !important;
            padding: 1.25rem !important;
            font-size: 1rem !important;
            border-radius: 0.5rem !important;
            box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important;
        }
        header[data-testid="stHeader"] {
            background-color: #1A1A1A !important;
        }
    
        section[data-testid="stSidebar"] > div:first-child {
            background-color: #1A1A1A !important;
            color: #FFFFFF !important;
            padding: 2rem 1.5rem 1.5rem 1.5rem !important;
            border-radius: 12px;
            box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
            font-size: 0.95rem;
            line-height: 1.5;
}
;
        html, body, [data-testid="stApp"] {
            background-color: #1A1A1A !important;
        }
        .custom-table {
            background-color: #D3D3D3;
            color: #1A1A1A;
            font-family: monospace;
            padding: 1rem;
            border-radius: 8px;
            overflow-x: auto;
            white-space: pre;
            border: 1px solid #ccc;

        }
        .sidebar-stats {
            color: lightgray !important;
            font-size: 1.1rem !important;
            margin-top: 1.5rem;
            font-weight: 600;
        }
        .sidebar-contrast-block {
            background-color: #2b2b2b !important;
            padding: 1.25rem;
            border-radius: 10px;
            margin-top: 1.5rem;
}
        section.main > div {  /* widen main container */
            max-width: 95%;
            padding-left: 3rem;
            padding-right: 3rem;
}

        }

</style>
""", unsafe_allow_html=True)

# Use an image from a URL for the banner
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)

# Streamlit app header
st.title("MetaDiscovery Agent for Library of Congress Collections")
st.markdown("""
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs
an analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
""")

# Updated collection URLs using the correct LOC API 
collections = {
    "American Revolutionary War Maps": "american+revolutionary+war+maps",
    "Civil War Maps": "civil+war+maps",
    "Women's Suffrage": "women+suffrage",
    "World War I Posters": "world+war+posters"
}

# Sidebar for selecting collection
#st.sidebar.markdown("## Settings")

# Create empty metadata_df variable to ensure it exists before checking
metadata_df = pd.DataFrame()

# Add a key to the selectbox to ensure it refreshes properly
with st.sidebar:
    st.markdown("""
    <div style='
        background-color: #2b2b2b
        padding: 1.5rem;
        border-radius: 12px;
        margin-bottom: 1.5rem;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    '>
    """, unsafe_allow_html=True)
    
    selected = st.radio("Select a Collection", list(collections.keys()), key="collection_selector")
    
    st.markdown("</div>", unsafe_allow_html=True)

search_query = collections[selected]

# Define the collection URL
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"

# Create an empty placeholder for Quick Stats
stats_placeholder = st.sidebar.empty()


# Add a fetch button to make the action explicit
fetch_data = True
    
if fetch_data:
    # Display a loading spinner while fetching data
    with st.spinner(f"Fetching data for {selected}..."):
        # Fetch data from LOC API with spoofed User-Agent header
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36"
        }

        try:
            response = requests.get(collection_url, headers=headers)
            response.raise_for_status()
            data = response.json()

            if "results" in data:
                records = data.get("results", [])
            elif "items" in data:
                records = data.get("items", [])
            else:
                records = []
                st.error("Unexpected API response structure. No records found.")
            st.write(f"Retrieved {len(records)} records")

        except requests.exceptions.RequestException as e:
            st.error(f"API Connection Error: {e}")
            records = []
        except ValueError:
            st.error("Failed to parse API response as JSON")
            records = []

        # Extract selected metadata fields
        items = []
        for record in records:
            if isinstance(record, dict):
                description = record.get("description", "")
                if isinstance(description, list):
                    description = " ".join([str(d) for d in description])
                item = {
                    "id": record.get("id", ""),
                    "title": record.get("title", ""),
                    "date": record.get("date", ""),
                    "subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
                    "creator": record.get("creator", ""),
                    "description": description
                }
                if not item["title"] and "item" in record:
                    item["title"] = record.get("item", {}).get("title", "")
                if not item["date"] and "item" in record:
                    item["date"] = record.get("item", {}).get("date", "")
                items.append(item)

        metadata_df = pd.DataFrame(items)
        
        # Define custom completeness check
        def is_incomplete(value):
            return pd.isna(value) or value in ["", "N/A", "null", None]
        
        
        if not metadata_df.empty:
            incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
            incomplete_count = incomplete_mask.sum()
            total_fields = metadata_df.size
            filled_fields = (~metadata_df.map(is_incomplete)).sum().sum()
            overall_percent = (filled_fields / total_fields) * 100
        
            # Field-level completeness
            completeness = (~metadata_df.map(is_incomplete)).mean() * 100
            completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values})
            completeness_table = completeness_df.set_index("Field")
        
            # Sidebar Quick Stats (index hidden, orange theme)
            quick_stats = pd.DataFrame({
                "Metric": ["Total Records", "Incomplete Records", "Percent Complete"],
                "Value": [len(metadata_df), incomplete_count, round(overall_percent, 1)]
            })
            
            # Style it without index
            styled_quick_stats = (
                quick_stats.style
                .hide(axis="index")
                .background_gradient(cmap="Oranges", subset=["Value"])
                .format({"Value": "{:.1f}"})
            )
            
            # Add an expander and put the dataframe inside it
            with st.sidebar.expander("Quick Stats", expanded=True):
                st.dataframe(
                    styled_quick_stats,
                    use_container_width=True,
                    hide_index=True
                )
            # Calculate Top 10 Subjects
            if 'subject' in metadata_df.columns:
                top_subjects = (
                    metadata_df['subject']
                    .dropna()
                    .str.split(',')              
                    .explode()                  
                    .str.strip()                  
                    .value_counts()
                    .head(10)
                    .to_frame(name="Count")
                )

            #Most Common Subjects in Sidebar
            with st.sidebar.expander("Top 10 Most Common Subjects", expanded=True):
                st.dataframe(
                    top_subjects.style.background_gradient(cmap="Greens").format("{:.0f}"),
                    use_container_width=True,
                    height=240
    )

        with st.sidebar.expander("Helpful Resources", expanded=False):
            st.markdown("""
                <style>
                    .sidebar-links a {
                        color: lightgray !important;
                        text-decoration: none !important;
                    }
                    .sidebar-links a:hover {
                        text-decoration: underline !important;
                    }
                </style>
                <div class="sidebar-links">
                  <ul style='padding-left: 1em'>
                    <li><a href="https://www.loc.gov/apis/" target="_blank">LOC API Info</a></li>
                    <li><a href="https://www.loc.gov/" target="_blank">Library of Congress Homepage</a></li>
                    <li><a href="https://www.loc.gov/collections/" target="_blank">LOC Digital Collections</a></li>
                    <li><a href="https://www.loc.gov/marc/" target="_blank">MARC Metadata Standards</a></li>
                    <li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank">LOC Digital Strategy</a></li>
                  </ul>
                </div>
            """, unsafe_allow_html=True)

        # Utility functions for deeper metadata quality analysis
        def is_incomplete(value):
            return pd.isna(value) or value in ["", "N/A", "null", None]

        def is_valid_date(value):
            try:
                pd.to_datetime(value)
                return True
            except:
                return False

        if not metadata_df.empty:
            st.subheader("Retrieved Metadata Sample")
            st.dataframe(metadata_df.head())


            # Fill the placeholder created earlier            
            st.subheader("Field Completeness Breakdown")

            st.markdown("""
                <div style='
                    background-color: #2e2e2e;
                    padding: 1.2rem;
                    border-radius: 10px;
                    margin-top: 1.5rem;
                    color: lightgray;
                '>
            """, unsafe_allow_html=True)
            
            st.dataframe(
                completeness_table.style.background_gradient(cmap="Greens").format("{:.1f}%"),
                use_container_width=True,
                height=240
            )
            
            st.markdown("</div>", unsafe_allow_html=True)


            # Identify incomplete records
            incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
            incomplete_records = metadata_df[incomplete_mask]

            st.subheader("Suggested Metadata Enhancements")

# Look for records with descriptions but missing subjects or other fields
incomplete_with_desc = metadata_df[metadata_df['description'].notnull() & 
                                  (metadata_df['subject'].isnull() | 
                                   metadata_df['creator'].isnull())]

# Reference data should be complete records with both subjects and descriptions
reference_df = metadata_df[metadata_df['subject'].notnull() & 
                          metadata_df['description'].notnull() &
                          metadata_df['creator'].notnull()]

# Print debugging info
st.write(f"Records with descriptions but missing fields: {len(incomplete_with_desc)}")
st.write(f"Complete reference records: {len(reference_df)}")

tfidf = TfidfVectorizer(stop_words='english', max_features=1000)

if len(incomplete_with_desc) > 0 and len(reference_df) > 0:
    try:
        suggestions = []
        # Fit TF-IDF on all complete descriptions
        tfidf_matrix = tfidf.fit_transform(reference_df['description'].fillna('').astype(str))
        
        # For each incomplete record
        for idx, row in incomplete_with_desc.iterrows():
            if pd.notna(row['description']):
                # Transform this record's description 
                desc_vec = tfidf.transform([str(row['description'])])
                
                # Get similarity scores to all reference records
                sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
                
                # Find the top 3 most similar records
                top_indices = sims.argsort()[-3:][::-1]
                
                # Get the most frequent subject among top matches
                top_subjects = reference_df.iloc[top_indices]['subject'].value_counts().index
                if len(top_subjects) > 0:
                    suggested_subject = top_subjects[0]
                    suggestions.append((row['title'], suggested_subject))
        
        if suggestions:
            suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
            
            # Apply similar styling as your other tables
            styled_suggestions = (
                suggestions_df.style
                .background_gradient(cmap="Greens", subset=["Suggested Subject"])
                .hide(axis="index")
            )
            
            # Display as a dataframe with styling
            st.dataframe(
                styled_suggestions,
                use_container_width=True,
                hide_index=True,
                height=min(240, len(suggestions) * 35 + 38)
            )
        else:
            empty_df = pd.DataFrame([["No metadata enhancement suggestions available."]], 
                                   columns=["Message"])
            styled_empty = empty_df.style.hide(axis="index")
            st.dataframe(styled_empty, use_container_width=True, hide_index=True)
    except Exception as e:
        st.error(f"Error generating metadata suggestions: {e}")
        st.error(f"Error details: {str(e)}")
else:
    empty_df = pd.DataFrame([["Not enough descriptive data to generate metadata suggestions."]], 
                           columns=["Message"])
    styled_empty = empty_df.style.hide(axis="index")
    st.dataframe(styled_empty, use_container_width=True, hide_index=True)