Spaces:
Sleeping
Sleeping
File size: 7,586 Bytes
a3e0475 b9e2074 a3e0475 b9e2074 a3e0475 3cc060e 6b56b5d a3e0475 233eda7 b0211dd 233eda7 d24d7b6 7e6badf 1218ea2 7e6badf 233eda7 94ac9e7 a3e0475 b9e2074 b0211dd 6b56b5d a3e0475 6b56b5d a3e0475 94ac9e7 3cc060e 94ac9e7 3cc060e a3e0475 b9e2074 3cc060e b9e2074 1218ea2 b9e2074 68577cc b0211dd 68577cc b0211dd 2a239ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY # Ensure this file exists with your NASA API Key
# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀")
# --- Ensure Session State Variables are Initialized ---
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False # Tracks whether HAL has responded
if "follow_up" not in st.session_state:
st.session_state.follow_up = "" # Stores follow-up question
if "last_topic" not in st.session_state:
st.session_state.last_topic = "" # Stores last user topic
# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN") # Hugging Face API Token
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates a concise and conversational follow-up question related to the user's input.
"""
prompt_text = (
f"Given the user's question: '{user_text}', generate a single friendly follow-up question. "
"Make it short, conversational, and natural—like a human would ask. "
"Example: If the user asks 'What is a quark?', respond with something like "
"'Would you like to learn about the six types of quarks?' "
"Do NOT include phrases like 'A natural follow-up question could be'."
)
hf = get_llm_hf_inference(max_new_tokens=32, temperature=0.7)
return hf.invoke(input=prompt_text).strip()
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
"""
Generates HAL's response, making it more conversational and engaging.
"""
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}"
"\nCurrent Conversation:\n{chat_history}\n\n"
"\nUser: {user_text}.\n [/INST]"
"\nAI: Keep responses conversational and engaging. Start with a friendly phrase like "
"'Certainly!', 'Of course!', or 'Great question!' before answering."
" Keep responses concise but engaging."
"\nHAL:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("HAL:")[-1].strip()
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Chat UI ---
st.title("🚀 HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")
# Sidebar: Reset Chat
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
st.session_state.last_topic = ""
st.rerun()
# Custom Chat Styling
st.markdown("""
<style>
.user-msg {
background-color: #0078D7;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.assistant-msg {
background-color: #333333;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.container {
display: flex;
flex-direction: column;
align-items: flex-start;
}
@media (max-width: 600px) {
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
}
</style>
""", unsafe_allow_html=True)
# --- Chat History Display (Ensures All Messages Are Visible) ---
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# --- Single Input Box for Both Initial and Follow-Up Messages ---
user_input = st.chat_input("Type your message here...") # Uses Enter to submit
if user_input:
# Save user message in chat history
st.session_state.chat_history.append({'role': 'user', 'content': user_input})
# Generate HAL's response
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
st.session_state.chat_history.append({'role': 'assistant', 'content': response})
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True # Enables follow-up response cycle
if st.session_state.response_ready and st.session_state.follow_up:
st.session_state.chat_history.append({'role': 'assistant', 'content': st.session_state.follow_up})
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
st.session_state.response_ready = False
|