Spaces:
Sleeping
Sleeping
File size: 6,165 Bytes
a3e0475 b9e2074 a3e0475 b9e2074 a3e0475 3cc060e a3e0475 94ac9e7 a3e0475 b9e2074 a3e0475 94ac9e7 a3e0475 94ac9e7 3cc060e 94ac9e7 3cc060e 94ac9e7 3cc060e a3e0475 b9e2074 3cc060e b9e2074 3cc060e b9e2074 3cc060e b9e2074 68577cc 3cc060e 68577cc 3cc060e 68577cc 3cc060e b9e2074 3cc060e 94ac9e7 3cc060e 68577cc 3cc060e a3e0475 3cc060e a3e0475 3cc060e a3e0475 b9e2074 3cc060e 68577cc b9e2074 3cc060e a3e0475 3cc060e 94ac9e7 3cc060e 94ac9e7 3cc060e 94ac9e7 3cc060e 94ac9e7 3cc060e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY # Import the NASA API key
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
llm = HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN") # Hugging Face token from environment variable
)
return llm
def get_nasa_apod():
"""
Fetch NASA Astronomy Picture of the Day (APOD).
"""
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
"""
Analyze sentiment of user input.
"""
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
"""
Predicts user's intent based on input.
"""
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates a follow-up question to continue the conversation.
"""
prompt_text = (
f"Based on the user's message: '{user_text}', suggest a natural follow-up question "
"to keep the conversation engaging."
)
hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
chat = hf.invoke(input=prompt_text)
return chat.strip()
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
prompt = PromptTemplate.from_template(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:"
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("AI:")[-1]
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE":
response += "\nπ I'm sorry to hear that. How can I assist you further?"
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# Streamlit UI Setup
st.set_page_config(page_title="NASA ChatBot", page_icon="π")
st.title("π NASA AI ChatBot")
st.markdown("π *Powered by Hugging Face & NASA APIs!*")
# Custom CSS for chat styling
st.markdown("""
<style>
.user-msg { background-color: #ADD8E6; padding: 10px; border-radius: 10px; margin-bottom: 5px; }
.assistant-msg { background-color: #F0F0F0; padding: 10px; border-radius: 10px; margin-bottom: 5px; }
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; } }
</style>
""", unsafe_allow_html=True)
# Initialize chat history
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Sidebar for chat reset
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.experimental_rerun()
# Chat display
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {message['content']}</div>", unsafe_allow_html=True)
# User input
user_input = st.text_area("Type your message:", height=100)
if st.button("Send"):
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
# Display response
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)
# Display NASA image if available
if image_url:
st.image(image_url, caption="NASA Image of the Day")
# Follow-up options
follow_up_options = [follow_up, "Explain differently", "Give me an example"]
selected_option = st.radio("What would you like to do next?", follow_up_options)
if st.button("Continue"):
if selected_option:
response, _, st.session_state.chat_history, _ = get_response(
system_message="You are a helpful AI assistant.",
user_text=selected_option,
chat_history=st.session_state.chat_history
)
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)
|