File size: 6,165 Bytes
a3e0475
b9e2074
a3e0475
b9e2074
a3e0475
 
3cc060e
 
a3e0475
94ac9e7
a3e0475
b9e2074
 
 
a3e0475
 
 
 
 
94ac9e7
a3e0475
 
 
94ac9e7
 
3cc060e
94ac9e7
 
 
 
 
3cc060e
94ac9e7
3cc060e
a3e0475
b9e2074
 
3cc060e
b9e2074
 
3cc060e
b9e2074
 
 
3cc060e
b9e2074
 
 
 
 
68577cc
 
3cc060e
68577cc
 
3cc060e
 
68577cc
 
 
 
 
 
 
3cc060e
b9e2074
 
 
 
3cc060e
 
94ac9e7
3cc060e
68577cc
 
 
3cc060e
a3e0475
 
 
 
3cc060e
a3e0475
3cc060e
a3e0475
 
 
 
 
 
b9e2074
 
3cc060e
68577cc
 
 
b9e2074
3cc060e
 
 
 
a3e0475
3cc060e
 
94ac9e7
3cc060e
 
 
 
 
 
 
 
 
 
94ac9e7
 
3cc060e
 
94ac9e7
 
3cc060e
94ac9e7
3cc060e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY  # Import the NASA API key

model_id = "mistralai/Mistral-7B-Instruct-v0.3"

# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")

def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
    llm = HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=os.getenv("HF_TOKEN")  # Hugging Face token from environment variable
    )
    return llm

def get_nasa_apod():
    """
    Fetch NASA Astronomy Picture of the Day (APOD).
    """
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    else:
        return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."

def analyze_sentiment(user_text):
    """
    Analyze sentiment of user input.
    """
    result = sentiment_analyzer(user_text)[0]
    return result['label']

def predict_action(user_text):
    """
    Predicts user's intent based on input.
    """
    if "NASA" in user_text or "space" in user_text:
        return "nasa_info"
    return "general_query"

def generate_follow_up(user_text):
    """
    Generates a follow-up question to continue the conversation.
    """
    prompt_text = (
        f"Based on the user's message: '{user_text}', suggest a natural follow-up question "
        "to keep the conversation engaging."
    )

    hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
    chat = hf.invoke(input=prompt_text)
    
    return chat.strip()

def get_response(system_message, chat_history, user_text, max_new_tokens=256):
    sentiment = analyze_sentiment(user_text)
    action = predict_action(user_text)

    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url

    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)

    prompt = PromptTemplate.from_template(
        "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:"
    )

    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
    response = response.split("AI:")[-1]

    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})

    if sentiment == "NEGATIVE":
        response += "\n😞 I'm sorry to hear that. How can I assist you further?"

    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})

    return response, follow_up, chat_history, None

# Streamlit UI Setup
st.set_page_config(page_title="NASA ChatBot", page_icon="πŸš€")

st.title("πŸš€ NASA AI ChatBot")
st.markdown("🌌 *Powered by Hugging Face & NASA APIs!*")

# Custom CSS for chat styling
st.markdown("""
    <style>
    .user-msg { background-color: #ADD8E6; padding: 10px; border-radius: 10px; margin-bottom: 5px; }
    .assistant-msg { background-color: #F0F0F0; padding: 10px; border-radius: 10px; margin-bottom: 5px; }
    @media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; } }
    </style>
""", unsafe_allow_html=True)

# Initialize chat history
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]

# Sidebar for chat reset
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.experimental_rerun()

# Chat display
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {message['content']}</div>", unsafe_allow_html=True)

# User input
user_input = st.text_area("Type your message:", height=100)

if st.button("Send"):
    if user_input:
        response, follow_up, st.session_state.chat_history, image_url = get_response(
            system_message="You are a helpful AI assistant.",
            user_text=user_input,
            chat_history=st.session_state.chat_history
        )

        # Display response
        st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)

        # Display NASA image if available
        if image_url:
            st.image(image_url, caption="NASA Image of the Day")

        # Follow-up options
        follow_up_options = [follow_up, "Explain differently", "Give me an example"]
        selected_option = st.radio("What would you like to do next?", follow_up_options)

        if st.button("Continue"):
            if selected_option:
                response, _, st.session_state.chat_history, _ = get_response(
                    system_message="You are a helpful AI assistant.",
                    user_text=selected_option,
                    chat_history=st.session_state.chat_history
                )
                st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)