File size: 6,712 Bytes
a3e0475
b9e2074
a3e0475
b9e2074
a3e0475
 
3cc060e
6b56b5d
a3e0475
6b56b5d
94ac9e7
a3e0475
b9e2074
 
 
6b56b5d
a3e0475
6b56b5d
a3e0475
 
 
6b56b5d
a3e0475
 
6b56b5d
94ac9e7
 
 
 
 
3cc060e
94ac9e7
3cc060e
a3e0475
6b56b5d
b9e2074
 
3cc060e
b9e2074
6b56b5d
b9e2074
 
 
 
 
6b56b5d
68577cc
 
3cc060e
 
68577cc
 
6b56b5d
68577cc
6b56b5d
3cc060e
b9e2074
 
 
 
3cc060e
 
94ac9e7
3cc060e
68577cc
 
 
3cc060e
a3e0475
 
 
 
3cc060e
a3e0475
 
 
 
 
 
 
b9e2074
 
3cc060e
68577cc
 
 
b9e2074
3cc060e
 
6b56b5d
3cc060e
a3e0475
6b56b5d
 
1500113
6b56b5d
 
 
1500113
6b56b5d
 
 
 
94ac9e7
6b56b5d
3cc060e
 
5ce8be3
 
6b56b5d
5ce8be3
 
 
 
 
 
 
 
6b56b5d
5ce8be3
 
 
 
 
 
 
 
 
 
 
 
6b56b5d
5ce8be3
3cc060e
 
 
8714739
 
 
 
 
 
 
93a4e54
 
 
 
6b56b5d
3cc060e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b56b5d
3cc060e
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY  # Ensure this file exists with your NASA API Key

# Model settings
model_id = "mistralai/Mistral-7B-Instruct-v0.3"

# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")

# Function to initialize Hugging Face model
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=os.getenv("HF_TOKEN")  # Hugging Face API Token
    )

# Function to get NASA Astronomy Picture of the Day
def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    else:
        return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."

# Function to analyze sentiment of user input
def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

# Function to predict user intent
def predict_action(user_text):
    if "NASA" in user_text or "space" in user_text:
        return "nasa_info"
    return "general_query"

# Function to generate a follow-up question
def generate_follow_up(user_text):
    prompt_text = (
        f"Based on the user's message: '{user_text}', suggest a natural follow-up question "
        "to keep the conversation engaging."
    )
    hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
    return hf.invoke(input=prompt_text).strip()

# Function to process user input and generate a response
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
    sentiment = analyze_sentiment(user_text)
    action = predict_action(user_text)

    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url

    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)

    prompt = PromptTemplate.from_template(
        "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:"
    )
    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
    response = response.split("AI:")[-1]

    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})

    if sentiment == "NEGATIVE":
        response += "\n😞 I'm sorry to hear that. How can I assist you further?"

    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})

    return response, follow_up, chat_history, None

# --- Streamlit UI Setup ---
st.set_page_config(page_title="NASA ChatBot", page_icon="πŸš€")

st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")

# Ensure chat history is initialized
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]

# Sidebar for chat reset
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.experimental_rerun()

# Chat Display Styling
st.markdown("""
    <style>
    .user-msg {
        background-color: #0078D7; /* Dark Blue */
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .assistant-msg {
        background-color: #333333; /* Dark Gray */
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .container {
        display: flex;
        flex-direction: column;
        align-items: flex-start;
    }
    @media (max-width: 600px) {
        .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
    }
    </style>
""", unsafe_allow_html=True)

# Chat Display
st.markdown("<div class='container'>", unsafe_allow_html=True)

for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {message['content']}</div>", unsafe_allow_html=True)

st.markdown("</div>", unsafe_allow_html=True)

# User Input Section
user_input = st.text_area("Type your message:", height=100)

if st.button("Send"):
    if user_input:
        response, follow_up, st.session_state.chat_history, image_url = get_response(
            system_message="You are a helpful AI assistant.",
            user_text=user_input,
            chat_history=st.session_state.chat_history
        )

        # Display response
        st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)

        # Display NASA image if available
        if image_url:
            st.image(image_url, caption="NASA Image of the Day")

        # Follow-up question suggestions
        follow_up_options = [follow_up, "Explain differently", "Give me an example"]
        selected_option = st.radio("What would you like to do next?", follow_up_options)

        if st.button("Continue"):
            if selected_option:
                response, _, st.session_state.chat_history, _ = get_response(
                    system_message="You are a helpful AI assistant.",
                    user_text=selected_option,
                    chat_history=st.session_state.chat_history
                )
                st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)