Spaces:
Sleeping
Sleeping
File size: 6,712 Bytes
a3e0475 b9e2074 a3e0475 b9e2074 a3e0475 3cc060e 6b56b5d a3e0475 6b56b5d 94ac9e7 a3e0475 b9e2074 6b56b5d a3e0475 6b56b5d a3e0475 6b56b5d a3e0475 6b56b5d 94ac9e7 3cc060e 94ac9e7 3cc060e a3e0475 6b56b5d b9e2074 3cc060e b9e2074 6b56b5d b9e2074 6b56b5d 68577cc 3cc060e 68577cc 6b56b5d 68577cc 6b56b5d 3cc060e b9e2074 3cc060e 94ac9e7 3cc060e 68577cc 3cc060e a3e0475 3cc060e a3e0475 b9e2074 3cc060e 68577cc b9e2074 3cc060e 6b56b5d 3cc060e a3e0475 6b56b5d 1500113 6b56b5d 1500113 6b56b5d 94ac9e7 6b56b5d 3cc060e 5ce8be3 6b56b5d 5ce8be3 6b56b5d 5ce8be3 6b56b5d 5ce8be3 3cc060e 8714739 93a4e54 6b56b5d 3cc060e 6b56b5d 3cc060e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY # Ensure this file exists with your NASA API Key
# Model settings
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
# Function to initialize Hugging Face model
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN") # Hugging Face API Token
)
# Function to get NASA Astronomy Picture of the Day
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
# Function to analyze sentiment of user input
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
# Function to predict user intent
def predict_action(user_text):
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
# Function to generate a follow-up question
def generate_follow_up(user_text):
prompt_text = (
f"Based on the user's message: '{user_text}', suggest a natural follow-up question "
"to keep the conversation engaging."
)
hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
return hf.invoke(input=prompt_text).strip()
# Function to process user input and generate a response
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
prompt = PromptTemplate.from_template(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:"
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("AI:")[-1]
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE":
response += "\nπ I'm sorry to hear that. How can I assist you further?"
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Streamlit UI Setup ---
st.set_page_config(page_title="NASA ChatBot", page_icon="π")
st.title("π HAL - Your NASA AI Assistant")
st.markdown("π *Ask me about space, NASA, and beyond!*")
# Ensure chat history is initialized
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Sidebar for chat reset
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.experimental_rerun()
# Chat Display Styling
st.markdown("""
<style>
.user-msg {
background-color: #0078D7; /* Dark Blue */
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.assistant-msg {
background-color: #333333; /* Dark Gray */
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.container {
display: flex;
flex-direction: column;
align-items: flex-start;
}
@media (max-width: 600px) {
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
}
</style>
""", unsafe_allow_html=True)
# Chat Display
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# User Input Section
user_input = st.text_area("Type your message:", height=100)
if st.button("Send"):
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
# Display response
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)
# Display NASA image if available
if image_url:
st.image(image_url, caption="NASA Image of the Day")
# Follow-up question suggestions
follow_up_options = [follow_up, "Explain differently", "Give me an example"]
selected_option = st.radio("What would you like to do next?", follow_up_options)
if st.button("Continue"):
if selected_option:
response, _, st.session_state.chat_history, _ = get_response(
system_message="You are a helpful AI assistant.",
user_text=selected_option,
chat_history=st.session_state.chat_history
)
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)
|