Spaces:
Sleeping
Sleeping
File size: 7,537 Bytes
a3e0475 b9e2074 a3e0475 b9e2074 a3e0475 3cc060e a3e0475 94ac9e7 a3e0475 b9e2074 a3e0475 94ac9e7 a3e0475 94ac9e7 3cc060e 94ac9e7 3cc060e 94ac9e7 3cc060e a3e0475 b9e2074 3cc060e b9e2074 3cc060e b9e2074 3cc060e b9e2074 68577cc 3cc060e 68577cc 3cc060e 68577cc 3cc060e b9e2074 3cc060e 94ac9e7 3cc060e 68577cc 3cc060e a3e0475 3cc060e a3e0475 3cc060e a3e0475 b9e2074 3cc060e 68577cc b9e2074 3cc060e a3e0475 1500113 94ac9e7 3cc060e 5ce8be3 3cc060e 8714739 94ac9e7 3cc060e 8714739 3cc060e 94ac9e7 3cc060e 94ac9e7 3cc060e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY # Import the NASA API key
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
llm = HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN") # Hugging Face token from environment variable
)
return llm
def get_nasa_apod():
"""
Fetch NASA Astronomy Picture of the Day (APOD).
"""
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
"""
Analyze sentiment of user input.
"""
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
"""
Predicts user's intent based on input.
"""
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates a follow-up question to continue the conversation.
"""
prompt_text = (
f"Based on the user's message: '{user_text}', suggest a natural follow-up question "
"to keep the conversation engaging."
)
hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
chat = hf.invoke(input=prompt_text)
return chat.strip()
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
prompt = PromptTemplate.from_template(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:"
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("AI:")[-1]
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE":
response += "\nπ I'm sorry to hear that. How can I assist you further?"
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# Streamlit UI Setup
st.set_page_config(page_title="NASA ChatBot", page_icon="π")
st.title("π HAL")
# Chat Display with Updated Styling
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Custom CSS for chat styling
st.markdown("""
<style>
/* Style for chat messages */
.user-msg {
background-color: #0078D7; /* Dark Blue */
color: white; /* White text for contrast */
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.assistant-msg {
background-color: #333333; /* Dark Gray */
color: white; /* White text for contrast */
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
/* Center messages for better appearance */
.container {
display: flex;
flex-direction: column;
align-items: flex-start;
}
/* Adjust messages on mobile */
@media (max-width: 600px) {
.user-msg, .assistant-msg {
font-size: 16px;
max-width: 100%;
}
}
</style>
""", unsafe_allow_html=True)
# Initialize chat history
# Initialize chat history in session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Chat Display
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<
# Sidebar for chat reset
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.experimental_rerun()
# Chat display
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {message['content']}</div>", unsafe_allow_html=True)
# User input
user_input = st.text_area("Type your message:", height=100)
if st.button("Send"):
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
# Display response
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)
# Display NASA image if available
if image_url:
st.image(image_url, caption="NASA Image of the Day")
# Follow-up options
follow_up_options = [follow_up, "Explain differently", "Give me an example"]
selected_option = st.radio("What would you like to do next?", follow_up_options)
if st.button("Continue"):
if selected_option:
response, _, st.session_state.chat_history, _ = get_response(
system_message="You are a helpful AI assistant.",
user_text=selected_option,
chat_history=st.session_state.chat_history
)
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)
|