File size: 7,349 Bytes
a3e0475
b9e2074
a3e0475
b9e2074
a3e0475
 
3cc060e
6b56b5d
a3e0475
233eda7
b0211dd
233eda7
 
 
 
 
 
 
 
d24d7b6
 
 
233eda7
94ac9e7
a3e0475
b9e2074
 
 
b0211dd
6b56b5d
a3e0475
 
 
6b56b5d
a3e0475
 
94ac9e7
 
 
 
 
3cc060e
94ac9e7
3cc060e
a3e0475
b9e2074
 
3cc060e
b9e2074
 
 
 
 
 
68577cc
b0211dd
 
 
68577cc
b0211dd
 
 
 
 
68577cc
b0211dd
 
6b56b5d
68577cc
3cc060e
b0211dd
 
 
b9e2074
 
 
 
3cc060e
 
94ac9e7
3cc060e
68577cc
 
 
3cc060e
a3e0475
b0211dd
a3e0475
 
b0211dd
 
 
 
 
 
 
 
 
a3e0475
b0211dd
a3e0475
 
b0211dd
a3e0475
 
 
b9e2074
b0211dd
b9e2074
b0211dd
68577cc
 
 
b9e2074
3cc060e
 
233eda7
3396b0f
6b56b5d
1500113
233eda7
6b56b5d
 
233eda7
d24d7b6
6b56b5d
94ac9e7
233eda7
3cc060e
 
5ce8be3
233eda7
6b56b5d
5ce8be3
 
 
 
 
 
 
233eda7
6b56b5d
5ce8be3
 
 
 
 
 
 
 
 
 
 
 
6b56b5d
5ce8be3
3cc060e
 
 
233eda7
8714739
 
 
 
 
e7b8136
93a4e54
 
b998175
6b6006e
72d8888
b998175
2ed2d41
 
 
 
 
 
 
3cc060e
2ed2d41
 
00e5cb9
2ed2d41
6b6006e
b998175
72d8888
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY  # Ensure this file exists with your NASA API Key

# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀")

# --- Ensure Session State Variables are Initialized ---
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]

if "response_ready" not in st.session_state:
    st.session_state.response_ready = False  # Tracks whether HAL has responded

if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""  # Stores follow-up question

# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"

# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")

def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=os.getenv("HF_TOKEN")  # Hugging Face API Token
    )

def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    else:
        return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

def predict_action(user_text):
    if "NASA" in user_text or "space" in user_text:
        return "nasa_info"
    return "general_query"

def generate_follow_up(user_text):
    """
    Generates a concise and conversational follow-up question related to the user's input.
    """
    prompt_text = (
        f"Given the user's question: '{user_text}', generate a single friendly follow-up question. "
        "Make it short, conversational, and natural—like a human would ask. "
        "Example: If the user asks 'What is a quark?', respond with something like "
        "'Would you like to learn about the six types of quarks?' "
        "Do NOT include phrases like 'A natural follow-up question could be'."
    )

    hf = get_llm_hf_inference(max_new_tokens=32, temperature=0.7)
    return hf.invoke(input=prompt_text).strip()

def get_response(system_message, chat_history, user_text, max_new_tokens=256):
    """
    Generates HAL's response, making it more conversational and engaging.
    """
    sentiment = analyze_sentiment(user_text)
    action = predict_action(user_text)

    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url

    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)

    prompt = PromptTemplate.from_template(
        (
            "[INST] {system_message}"
            "\nCurrent Conversation:\n{chat_history}\n\n"
            "\nUser: {user_text}.\n [/INST]"
            "\nAI: Keep responses conversational and engaging. Start with a friendly phrase like "
            "'Certainly!', 'Of course!', or 'Great question!' before answering."
            " Keep responses concise but engaging."
            "\nHAL:"
        )
    )

    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
    response = response.split("HAL:")[-1].strip()

    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})

    # ✅ Removes unnecessary sentiment apology
    if sentiment == "NEGATIVE":
        response += ""  # Keeps response normal instead of adding "I'm sorry to hear that"

    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})

    return response, follow_up, chat_history, None

# --- Chat UI ---
st.title("🚀 HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")

# Sidebar: Reset Chat
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False
    st.session_state.follow_up = ""
    st.experimental_rerun()

# Custom Chat Styling
st.markdown("""
    <style>
    .user-msg {
        background-color: #0078D7;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .assistant-msg {
        background-color: #333333;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .container {
        display: flex;
        flex-direction: column;
        align-items: flex-start;
    }
    @media (max-width: 600px) {
        .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
    }
    </style>
""", unsafe_allow_html=True)

# Chat History Display
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)

# --- Single Input Box for Both Initial and Follow-Up Messages ---
user_input = st.chat_input("Type your message here...")  # Only ONE chat_input()

if user_input:
    response, follow_up, st.session_state.chat_history, image_url = get_response(
        system_message="You are a helpful AI assistant.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )

    st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)

    if image_url:
        st.image(image_url, caption="NASA Image of the Day")

    st.session_state.follow_up = follow_up
    st.session_state.response_ready = True  # Enables follow-up response cycle

# Display follow-up question inside chat if available
if st.session_state.response_ready and st.session_state.follow_up:
    st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)

    # Reset response state so user can type next input
    st.session_state.response_ready = False