Spaces:
Sleeping
Sleeping
File size: 5,016 Bytes
a3e0475 b9e2074 a3e0475 b9e2074 a3e0475 b9e2074 6351a04 a3e0475 94ac9e7 a3e0475 b9e2074 a3e0475 94ac9e7 a3e0475 94ac9e7 a3e0475 b9e2074 68577cc b42d1ff 68577cc a3e0475 b9e2074 94ac9e7 68577cc a3e0475 b9e2074 68577cc b9e2074 68577cc a3e0475 94ac9e7 3b1c938 94ac9e7 a3e0475 94ac9e7 a3e0475 94ac9e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline # for Sentiment Analysis
from config import NASA_API_KEY # Import the NASA API key from the configuration file
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
llm = HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN") # Hugging Face token from environment variable
)
return llm
def get_nasa_apod():
"""
Fetch the Astronomy Picture of the Day (APOD) from the NASA API.
"""
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return f"Title: {data['title']}\nExplanation: {data['explanation']}\nURL: {data['url']}"
else:
return "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
"""
Analyzes the sentiment of the user's input to adjust responses.
"""
result = sentiment_analyzer(user_text)[0]
sentiment = result['label']
return sentiment
def predict_action(user_text):
"""
Predicts actions based on user input (e.g., fetch space info or general knowledge).
"""
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
if "weather" in user_text:
return "weather_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates a relevant follow-up question based on the user's input.
"""
prompt_text = (
f"Given the user's message: '{user_text}', ask one natural follow-up question "
"that offers to continue the conversation or go in a new direction."
)
hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
chat = hf.invoke(input=prompt_text)
return chat.strip()
def get_response(system_message, chat_history, user_text,
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
if action == "nasa_info":
nasa_response = get_nasa_apod()
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': nasa_response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return f"{nasa_response}\n\n{follow_up}", chat_history
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}"
"\nCurrent Conversation:\n{chat_history}\n\n"
"\nUser: {user_text}.\n [/INST]"
"\nAI:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("AI:")[-1]
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
# Modify response based on sentiment analysis (e.g., offer help for negative sentiments)
if sentiment == "NEGATIVE":
response += "\nI'm sorry to hear that. How can I assist you further?"
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return f"{response}\n\n{follow_up}", chat_history
# Streamlit setup
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
st.title("NASA Personal Assistant")
st.markdown(f"*This chatbot uses {model_id} and NASA's APIs to provide information and responses.*")
# Initialize session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Sidebar for settings
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Main chat interface
user_input = st.chat_input(placeholder="Type your message here...")
if user_input:
response, st.session_state.chat_history = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history,
max_new_tokens=128
)
# Display messages
for message in st.session_state.chat_history:
st.chat_message(message["role"]).write(message["content"])
|