NASA-AI-Chatbot / app.py
CCockrum's picture
Update app.py
6b56b5d verified
raw
history blame
6.71 kB
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from config import NASA_API_KEY # Ensure this file exists with your NASA API Key
# Model settings
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
# Function to initialize Hugging Face model
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN") # Hugging Face API Token
)
# Function to get NASA Astronomy Picture of the Day
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
# Function to analyze sentiment of user input
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
# Function to predict user intent
def predict_action(user_text):
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
# Function to generate a follow-up question
def generate_follow_up(user_text):
prompt_text = (
f"Based on the user's message: '{user_text}', suggest a natural follow-up question "
"to keep the conversation engaging."
)
hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
return hf.invoke(input=prompt_text).strip()
# Function to process user input and generate a response
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
prompt = PromptTemplate.from_template(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:"
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("AI:")[-1]
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE":
response += "\n😞 I'm sorry to hear that. How can I assist you further?"
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Streamlit UI Setup ---
st.set_page_config(page_title="NASA ChatBot", page_icon="πŸš€")
st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")
# Ensure chat history is initialized
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Sidebar for chat reset
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.experimental_rerun()
# Chat Display Styling
st.markdown("""
<style>
.user-msg {
background-color: #0078D7; /* Dark Blue */
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.assistant-msg {
background-color: #333333; /* Dark Gray */
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.container {
display: flex;
flex-direction: column;
align-items: flex-start;
}
@media (max-width: 600px) {
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
}
</style>
""", unsafe_allow_html=True)
# Chat Display
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# User Input Section
user_input = st.text_area("Type your message:", height=100)
if st.button("Send"):
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
# Display response
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)
# Display NASA image if available
if image_url:
st.image(image_url, caption="NASA Image of the Day")
# Follow-up question suggestions
follow_up_options = [follow_up, "Explain differently", "Give me an example"]
selected_option = st.radio("What would you like to do next?", follow_up_options)
if st.button("Continue"):
if selected_option:
response, _, st.session_state.chat_history, _ = get_response(
system_message="You are a helpful AI assistant.",
user_text=selected_option,
chat_history=st.session_state.chat_history
)
st.markdown(f"<div class='assistant-msg'><strong>Bot:</strong> {response}</div>", unsafe_allow_html=True)