NASA-AI-Chatbot / app.py
CCockrum's picture
Update app.py
ffbccbb verified
raw
history blame
9.45 kB
import os
import re
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
# Use environment variables for keys
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")
# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
# The initial greeting is stored in chat_history.
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False # Tracks whether HAL has responded
if "follow_up" not in st.session_state:
st.session_state.follow_up = "" # Stores the follow-up question
# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline with explicit model specification
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
revision="714eb0f"
)
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
# Specify task="text-generation" so that the endpoint uses the correct function.
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=HF_TOKEN,
task="text-generation"
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates a concise and conversational follow-up question related to the user's input.
The prompt instructs the model to avoid meta commentary.
"""
prompt_text = (
f"Generate a concise, friendly follow-up question based on the user's question: '{user_text}'. "
"Do not include meta instructions or commentary such as 'Never return just a statement.' "
"For example, if the user asked about quarks, you might ask: "
"'Would you like to know more about the six types of quarks, or is there another aspect of quantum physics you're curious about?'"
)
hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.8)
follow_up = hf.invoke(input=prompt_text).strip()
# Remove extraneous quotes if present.
follow_up = follow_up.strip('\'"')
# Optionally, remove any unwanted phrases (you can add more replacements if needed).
follow_up = re.sub(r"Never return just a statement\.?", "", follow_up, flags=re.IGNORECASE).strip()
# Ensure that something non-empty is returned.
if not follow_up:
follow_up = "Would you like to explore this topic further?"
return follow_up
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
"""
Generates HAL's response in a friendly, conversational manner.
Uses sentiment analysis to adjust tone when appropriate and always generates a follow-up question.
If the user's input includes style instructions (e.g., 'in the voice of an astrophysicist'),
the prompt instructs HAL to adapt accordingly.
"""
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
# Check for style instructions in the user message.
style_instruction = ""
lower_text = user_text.lower()
if "in the voice of" in lower_text or "speaking as" in lower_text:
# Extract the style instruction (a simple heuristic: take the part after "in the voice of")
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
if match:
style_instruction = match.group(2).strip().capitalize()
style_instruction = f" Please respond in the voice of {style_instruction}."
# Handle NASA-related queries separately.
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
# Build a filtered conversation history excluding the initial greeting.
filtered_history = ""
for message in chat_history:
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
continue
filtered_history += f"{message['role']}: {message['content']}\n"
# Add style instruction to the prompt if applicable.
style_clause = ""
if style_instruction:
style_clause = style_instruction
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Please answer the user's question without repeating any previous greetings."
" Keep your response friendly and conversational, starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." +
style_clause +
"\nHAL:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.split("HAL:")[-1].strip()
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
# Only override with an empathetic response for negative sentiment if the input is not a direct question.
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
chat_history[-1]['content'] = response
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Chat UI ---
st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")
# Sidebar: Reset Chat
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
st.experimental_rerun()
# Custom Chat Styling
st.markdown("""
<style>
.user-msg {
background-color: #0078D7;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.assistant-msg {
background-color: #333333;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.container {
display: flex;
flex-direction: column;
align-items: flex-start;
}
@media (max-width: 600px) {
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
}
</style>
""", unsafe_allow_html=True)
# --- Single Input Box for Both Initial and Follow-Up Messages ---
user_input = st.chat_input("Type your message here...") # Only ONE chat_input()
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True
# Render the entire chat history.
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)