File size: 9,453 Bytes
a3e0475
ffbccbb
fc5f1c7
d6f5773
fc5f1c7
a3e0475
 
5c095c6
fc42bd4
 
 
 
 
 
 
 
 
073538f
5c095c6
 
 
fc42bd4
5c095c6
f6bb49b
5c095c6
 
 
 
 
 
f6bb49b
5c095c6
 
94ac9e7
a3e0475
5c095c6
 
 
 
 
 
fc5f1c7
5c095c6
ad1c148
5c095c6
a3e0475
 
 
fc42bd4
5c095c6
a3e0475
 
94ac9e7
 
 
 
 
5c095c6
94ac9e7
5c095c6
073538f
fc5f1c7
 
5c095c6
fc5f1c7
 
 
 
 
 
 
 
5c095c6
ffbccbb
fc5f1c7
 
ffbccbb
 
 
 
fc5f1c7
b06581e
 
ffbccbb
 
 
 
 
b06581e
 
 
fc5f1c7
5c095c6
 
fc42bd4
ffbccbb
 
 
5c095c6
fc5f1c7
 
ffbccbb
 
 
 
 
 
 
 
 
 
fc5f1c7
4b25132
fc5f1c7
5c095c6
 
2a239ae
5c095c6
fc5f1c7
 
5c095c6
2a239ae
5c095c6
2a239ae
4b25132
ad1c148
 
 
 
 
 
ffbccbb
 
 
 
 
2a239ae
ad0b8d6
fc42bd4
 
ffbccbb
 
 
 
ad0b8d6
2a239ae
ad1c148
2a239ae
ad1c148
5c095c6
2a239ae
 
 
fc5f1c7
ffbccbb
4b25132
f6bb49b
 
fc5f1c7
 
 
 
5c095c6
2a239ae
5c095c6
 
 
2a239ae
5c095c6
2a239ae
 
5c095c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f543f0b
ad0b8d6
5c095c6
ad0b8d6
 
5c095c6
ad0b8d6
b8a80ad
5c095c6
 
fc5f1c7
5c095c6
 
fc5f1c7
4b25132
ad1c148
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import re
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline

# Use environment variables for keys
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")

# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
    # The initial greeting is stored in chat_history.
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]

if "response_ready" not in st.session_state:
    st.session_state.response_ready = False  # Tracks whether HAL has responded

if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""  # Stores the follow-up question

# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"

# Initialize sentiment analysis pipeline with explicit model specification
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
    revision="714eb0f"
)

def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
    # Specify task="text-generation" so that the endpoint uses the correct function.
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=HF_TOKEN,
        task="text-generation"
    )

def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    else:
        return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

def predict_action(user_text):
    if "NASA" in user_text or "space" in user_text:
        return "nasa_info"
    return "general_query"

def generate_follow_up(user_text):
    """
    Generates a concise and conversational follow-up question related to the user's input.
    The prompt instructs the model to avoid meta commentary.
    """
    prompt_text = (
        f"Generate a concise, friendly follow-up question based on the user's question: '{user_text}'. "
        "Do not include meta instructions or commentary such as 'Never return just a statement.' "
        "For example, if the user asked about quarks, you might ask: "
        "'Would you like to know more about the six types of quarks, or is there another aspect of quantum physics you're curious about?'"
    )
    hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.8)
    follow_up = hf.invoke(input=prompt_text).strip()
    # Remove extraneous quotes if present.
    follow_up = follow_up.strip('\'"')
    # Optionally, remove any unwanted phrases (you can add more replacements if needed).
    follow_up = re.sub(r"Never return just a statement\.?", "", follow_up, flags=re.IGNORECASE).strip()
    # Ensure that something non-empty is returned.
    if not follow_up:
        follow_up = "Would you like to explore this topic further?"
    return follow_up

def get_response(system_message, chat_history, user_text, max_new_tokens=256):
    """
    Generates HAL's response in a friendly, conversational manner.
    Uses sentiment analysis to adjust tone when appropriate and always generates a follow-up question.
    If the user's input includes style instructions (e.g., 'in the voice of an astrophysicist'),
    the prompt instructs HAL to adapt accordingly.
    """
    sentiment = analyze_sentiment(user_text)
    action = predict_action(user_text)
    
    # Check for style instructions in the user message.
    style_instruction = ""
    lower_text = user_text.lower()
    if "in the voice of" in lower_text or "speaking as" in lower_text:
        # Extract the style instruction (a simple heuristic: take the part after "in the voice of")
        match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
        if match:
            style_instruction = match.group(2).strip().capitalize()
            style_instruction = f" Please respond in the voice of {style_instruction}."

    # Handle NASA-related queries separately.
    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url

    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)

    # Build a filtered conversation history excluding the initial greeting.
    filtered_history = ""
    for message in chat_history:
        if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
            continue
        filtered_history += f"{message['role']}: {message['content']}\n"

    # Add style instruction to the prompt if applicable.
    style_clause = ""
    if style_instruction:
        style_clause = style_instruction

    prompt = PromptTemplate.from_template(
        (
            "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
            "User: {user_text}.\n [/INST]\n"
            "AI: Please answer the user's question without repeating any previous greetings."
            " Keep your response friendly and conversational, starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." +
            style_clause +
            "\nHAL:"
        )
    )

    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
    response = response.split("HAL:")[-1].strip()

    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})

    # Only override with an empathetic response for negative sentiment if the input is not a direct question.
    if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
        response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
        chat_history[-1]['content'] = response

    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})

    return response, follow_up, chat_history, None

# --- Chat UI ---
st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")

# Sidebar: Reset Chat
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False
    st.session_state.follow_up = ""
    st.experimental_rerun()

# Custom Chat Styling
st.markdown("""
    <style>
    .user-msg {
        background-color: #0078D7;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .assistant-msg {
        background-color: #333333;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .container {
        display: flex;
        flex-direction: column;
        align-items: flex-start;
    }
    @media (max-width: 600px) {
        .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
    }
    </style>
""", unsafe_allow_html=True)

# --- Single Input Box for Both Initial and Follow-Up Messages ---
user_input = st.chat_input("Type your message here...")  # Only ONE chat_input()

if user_input:
    response, follow_up, st.session_state.chat_history, image_url = get_response(
        system_message="You are a helpful AI assistant.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )

    if image_url:
        st.image(image_url, caption="NASA Image of the Day")

    st.session_state.follow_up = follow_up
    st.session_state.response_ready = True

# Render the entire chat history.
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)