CCockrum's picture
Update app.py
d4e1e5e verified
import gradio as gr
import numpy as np
import torch
import json
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import plotly.express as px
from typing import Dict, List, Tuple, Any
import logging
# Import your quantum AI agent (assuming it's in quantum_agent.py)
from quantum_agent import QuantumAIAgent, QuantumState, QuantumCircuit
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class QuantumAIInterface:
"""Gradio interface for the Quantum AI Agent."""
def __init__(self):
self.agent = QuantumAIAgent()
logger.info("Quantum AI Interface initialized")
def optimize_vqe(self, num_qubits: int, optimization_steps: int) -> Tuple[str, str]:
"""VQE optimization interface."""
try:
# Create a random Hamiltonian
dim = 2**num_qubits
hamiltonian = np.random.random((dim, dim))
hamiltonian = hamiltonian + hamiltonian.T # Make Hermitian
# Initialize random parameters
initial_params = np.random.random(num_qubits * 2)
# Run optimization
result = self.agent.optimize_quantum_algorithm("VQE", hamiltonian, initial_params)
# Format results
result_text = f"""
VQE Optimization Results:
========================
Ground State Energy: {result['ground_state_energy']:.6f}
Optimization Success: {result['optimization_success']}
Number of Iterations: {result['iterations']}
Optimal Parameters: {np.array2string(result['optimal_parameters'], precision=4)}
Circuit Depth: {result['optimal_circuit'].depth}
"""
# Create visualization
fig = plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.plot(result['optimal_parameters'], 'bo-')
plt.title('Optimal Parameters')
plt.xlabel('Parameter Index')
plt.ylabel('Value')
plt.subplot(1, 2, 2)
plt.bar(range(len(result['optimal_parameters'])), result['optimal_parameters'])
plt.title('Parameter Distribution')
plt.xlabel('Parameter Index')
plt.ylabel('Value')
plt.tight_layout()
plt.savefig('vqe_results.png', dpi=150, bbox_inches='tight')
plt.close()
return result_text, 'vqe_results.png'
except Exception as e:
error_msg = f"Error in VQE optimization: {str(e)}"
logger.error(error_msg)
return error_msg, None
def optimize_qaoa(self, num_qubits: int, num_layers: int) -> Tuple[str, str]:
"""QAOA optimization interface."""
try:
# Create problem Hamiltonian
dim = 2**num_qubits
hamiltonian = np.random.random((dim, dim))
hamiltonian = hamiltonian + hamiltonian.T
# Initialize QAOA parameters
initial_params = np.random.random(2 * num_layers) # beta and gamma
# Run optimization
result = self.agent.optimize_quantum_algorithm("QAOA", hamiltonian, initial_params)
result_text = f"""
QAOA Optimization Results:
=========================
Optimal Value: {result['optimal_value']:.6f}
Optimization Success: {result['optimization_success']}
Number of Iterations: {result['iterations']}
Optimal Beta: {np.array2string(result['optimal_beta'], precision=4)}
Optimal Gamma: {np.array2string(result['optimal_gamma'], precision=4)}
"""
# Create visualization
fig = plt.figure(figsize=(12, 5))
plt.subplot(1, 3, 1)
plt.plot(result['optimal_beta'], 'ro-', label='Beta')
plt.plot(result['optimal_gamma'], 'bo-', label='Gamma')
plt.title('QAOA Parameters')
plt.xlabel('Layer')
plt.ylabel('Value')
plt.legend()
plt.subplot(1, 3, 2)
plt.bar(range(len(result['optimal_beta'])), result['optimal_beta'], alpha=0.7, label='Beta')
plt.title('Beta Parameters')
plt.xlabel('Layer')
plt.ylabel('Value')
plt.subplot(1, 3, 3)
plt.bar(range(len(result['optimal_gamma'])), result['optimal_gamma'], alpha=0.7, label='Gamma', color='orange')
plt.title('Gamma Parameters')
plt.xlabel('Layer')
plt.ylabel('Value')
plt.tight_layout()
plt.savefig('qaoa_results.png', dpi=150, bbox_inches='tight')
plt.close()
return result_text, 'qaoa_results.png'
except Exception as e:
error_msg = f"Error in QAOA optimization: {str(e)}"
logger.error(error_msg)
return error_msg, None
def demonstrate_error_mitigation(self, num_qubits: int, noise_level: float) -> Tuple[str, str]:
"""Error mitigation demonstration."""
try:
# Create a quantum state
dim = 2**num_qubits
amplitudes = np.random.random(dim) + 1j * np.random.random(dim)
amplitudes = amplitudes / np.linalg.norm(amplitudes)
quantum_state = QuantumState(
amplitudes=amplitudes,
num_qubits=num_qubits,
fidelity=1.0 - noise_level
)
# Apply error mitigation
noise_model = {"noise_factor": noise_level}
corrected_state = self.agent.mitigate_errors(quantum_state, noise_model)
result_text = f"""
Error Mitigation Results:
========================
Number of Qubits: {num_qubits}
Original Fidelity: {quantum_state.fidelity:.4f}
Corrected Fidelity: {corrected_state.fidelity:.4f}
Fidelity Improvement: {corrected_state.fidelity - quantum_state.fidelity:.4f}
Noise Level: {noise_level:.4f}
"""
# Create visualization
fig = plt.figure(figsize=(12, 5))
plt.subplot(1, 3, 1)
plt.bar(['Original', 'Corrected'], [quantum_state.fidelity, corrected_state.fidelity])
plt.title('Fidelity Comparison')
plt.ylabel('Fidelity')
plt.ylim(0, 1)
plt.subplot(1, 3, 2)
plt.plot(np.abs(quantum_state.amplitudes), 'b-', label='Original', alpha=0.7)
plt.plot(np.abs(corrected_state.amplitudes), 'r-', label='Corrected', alpha=0.7)
plt.title('State Amplitudes (Magnitude)')
plt.xlabel('Basis State')
plt.ylabel('Amplitude')
plt.legend()
plt.subplot(1, 3, 3)
improvement = corrected_state.fidelity - quantum_state.fidelity
plt.bar(['Fidelity Improvement'], [improvement], color='green' if improvement > 0 else 'red')
plt.title('Improvement')
plt.ylabel('Fidelity Change')
plt.tight_layout()
plt.savefig('error_mitigation_results.png', dpi=150, bbox_inches='tight')
plt.close()
return result_text, 'error_mitigation_results.png'
except Exception as e:
error_msg = f"Error in error mitigation: {str(e)}"
logger.error(error_msg)
return error_msg, None
def optimize_resources(self, num_circuits: int, max_qubits: int, available_qubits: int) -> Tuple[str, str]:
"""Resource optimization demonstration."""
try:
# Generate random circuits
circuits = []
for i in range(num_circuits):
num_qubits = np.random.randint(2, min(max_qubits, available_qubits) + 1)
depth = np.random.randint(5, 50)
circuits.append(QuantumCircuit([], np.array([]), num_qubits, depth))
# Optimize resources
allocation_plan = self.agent.optimize_resources(circuits, available_qubits)
result_text = f"""
Resource Optimization Results:
=============================
Number of Circuits: {num_circuits}
Available Qubits: {available_qubits}
Resource Utilization: {allocation_plan['resource_utilization']:.2%}
Estimated Runtime: {allocation_plan['estimated_runtime']:.2f} time units
Scheduled Circuits: {len(allocation_plan['schedule'])}
"""
if allocation_plan['schedule']:
result_text += "\nSchedule Details:\n"
for i, task in enumerate(allocation_plan['schedule'][:5]): # Show first 5
result_text += f"Circuit {task['circuit_id']}: {task['qubits_allocated']} qubits, starts at {task['start_time']:.2f}\n"
# Create visualization
fig = plt.figure(figsize=(12, 8))
# Resource utilization
plt.subplot(2, 2, 1)
plt.pie([allocation_plan['resource_utilization'], 1 - allocation_plan['resource_utilization']],
labels=['Used', 'Available'], autopct='%1.1f%%')
plt.title('Resource Utilization')
# Circuit requirements
plt.subplot(2, 2, 2)
qubit_reqs = [c.num_qubits for c in circuits]
plt.hist(qubit_reqs, bins=min(10, max_qubits), alpha=0.7)
plt.title('Circuit Qubit Requirements')
plt.xlabel('Number of Qubits')
plt.ylabel('Frequency')
# Circuit depths
plt.subplot(2, 2, 3)
depths = [c.depth for c in circuits]
plt.hist(depths, bins=10, alpha=0.7, color='orange')
plt.title('Circuit Depths')
plt.xlabel('Depth')
plt.ylabel('Frequency')
# Schedule timeline
plt.subplot(2, 2, 4)
if allocation_plan['schedule']:
start_times = [task['start_time'] for task in allocation_plan['schedule']]
durations = [task['estimated_duration'] for task in allocation_plan['schedule']]
plt.barh(range(len(start_times)), durations, left=start_times, alpha=0.7)
plt.title('Schedule Timeline')
plt.xlabel('Time')
plt.ylabel('Circuit')
plt.tight_layout()
plt.savefig('resource_optimization_results.png', dpi=150, bbox_inches='tight')
plt.close()
return result_text, 'resource_optimization_results.png'
except Exception as e:
error_msg = f"Error in resource optimization: {str(e)}"
logger.error(error_msg)
return error_msg, None
def hybrid_processing_demo(self, data_size: int, quantum_component: str) -> Tuple[str, str]:
"""Hybrid processing demonstration."""
try:
# Generate classical data
classical_data = np.random.random(data_size)
# Run hybrid processing
result = self.agent.hybrid_processing(classical_data, quantum_component)
result_text = f"""
Hybrid Processing Results:
=========================
Input Data Size: {data_size}
Quantum Component: {quantum_component}
Output Statistics:
Mean: {result['final_result']['statistics']['mean']:.6f}
Std: {result['final_result']['statistics']['std']:.6f}
Min: {result['final_result']['statistics']['min']:.6f}
Max: {result['final_result']['statistics']['max']:.6f}
Confidence: {result['final_result']['confidence']:.4f}
"""
# Create visualization
fig = plt.figure(figsize=(15, 5))
plt.subplot(1, 3, 1)
plt.plot(classical_data, 'b-', alpha=0.7)
plt.title('Original Classical Data')
plt.xlabel('Index')
plt.ylabel('Value')
plt.subplot(1, 3, 2)
plt.plot(result['preprocessed_data'], 'g-', alpha=0.7)
plt.title('Preprocessed Data')
plt.xlabel('Index')
plt.ylabel('Value')
plt.subplot(1, 3, 3)
plt.plot(result['quantum_result'].flatten(), 'r-', alpha=0.7)
plt.title(f'Quantum Result ({quantum_component})')
plt.xlabel('Index')
plt.ylabel('Value')
plt.tight_layout()
plt.savefig('hybrid_processing_results.png', dpi=150, bbox_inches='tight')
plt.close()
return result_text, 'hybrid_processing_results.png'
except Exception as e:
error_msg = f"Error in hybrid processing: {str(e)}"
logger.error(error_msg)
return error_msg, None
def create_interface():
"""Create the Gradio interface."""
interface = QuantumAIInterface()
with gr.Blocks(title="Quantum AI Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸš€ Quantum AI Agent
This is an AI agent designed to optimize quantum computing algorithms using classical machine learning techniques.
## Features:
- **Algorithm Optimization**: VQE, QAOA, QNN parameter optimization
- **Error Mitigation**: AI-powered quantum error correction
- **Resource Management**: Intelligent qubit allocation and scheduling
- **Hybrid Processing**: Quantum-classical algorithm integration
""")
with gr.Tabs():
# VQE Tab
with gr.TabItem("πŸ”¬ VQE Optimization"):
gr.Markdown("### Variational Quantum Eigensolver")
with gr.Row():
with gr.Column():
vqe_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
vqe_steps = gr.Slider(10, 1000, value=100, step=10, label="Optimization Steps")
vqe_button = gr.Button("Optimize VQE", variant="primary")
with gr.Column():
vqe_output = gr.Textbox(label="Results", lines=10)
vqe_plot = gr.Image(label="Visualization")
vqe_button.click(
interface.optimize_vqe,
inputs=[vqe_qubits, vqe_steps],
outputs=[vqe_output, vqe_plot]
)
# QAOA Tab
with gr.TabItem("🎯 QAOA Optimization"):
gr.Markdown("### Quantum Approximate Optimization Algorithm")
with gr.Row():
with gr.Column():
qaoa_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
qaoa_layers = gr.Slider(1, 5, value=2, step=1, label="Number of Layers")
qaoa_button = gr.Button("Optimize QAOA", variant="primary")
with gr.Column():
qaoa_output = gr.Textbox(label="Results", lines=10)
qaoa_plot = gr.Image(label="Visualization")
qaoa_button.click(
interface.optimize_qaoa,
inputs=[qaoa_qubits, qaoa_layers],
outputs=[qaoa_output, qaoa_plot]
)
# Error Mitigation Tab
with gr.TabItem("πŸ›‘οΈ Error Mitigation"):
gr.Markdown("### Quantum Error Correction")
with gr.Row():
with gr.Column():
error_qubits = gr.Slider(2, 5, value=3, step=1, label="Number of Qubits")
noise_level = gr.Slider(0.0, 0.5, value=0.1, step=0.01, label="Noise Level")
error_button = gr.Button("Apply Error Mitigation", variant="primary")
with gr.Column():
error_output = gr.Textbox(label="Results", lines=10)
error_plot = gr.Image(label="Visualization")
error_button.click(
interface.demonstrate_error_mitigation,
inputs=[error_qubits, noise_level],
outputs=[error_output, error_plot]
)
# Resource Management Tab
with gr.TabItem("⚑ Resource Management"):
gr.Markdown("### Quantum Resource Optimization")
with gr.Row():
with gr.Column():
num_circuits = gr.Slider(3, 20, value=10, step=1, label="Number of Circuits")
max_qubits = gr.Slider(2, 10, value=5, step=1, label="Max Qubits per Circuit")
available_qubits = gr.Slider(5, 20, value=10, step=1, label="Available Qubits")
resource_button = gr.Button("Optimize Resources", variant="primary")
with gr.Column():
resource_output = gr.Textbox(label="Results", lines=10)
resource_plot = gr.Image(label="Visualization")
resource_button.click(
interface.optimize_resources,
inputs=[num_circuits, max_qubits, available_qubits],
outputs=[resource_output, resource_plot]
)
# Hybrid Processing Tab
with gr.TabItem("πŸ”„ Hybrid Processing"):
gr.Markdown("### Quantum-Classical Hybrid Algorithms")
with gr.Row():
with gr.Column():
data_size = gr.Slider(10, 100, value=50, step=5, label="Data Size")
quantum_component = gr.Dropdown(
["quantum_kernel", "quantum_feature_map", "quantum_neural_layer"],
value="quantum_kernel",
label="Quantum Component"
)
hybrid_button = gr.Button("Run Hybrid Processing", variant="primary")
with gr.Column():
hybrid_output = gr.Textbox(label="Results", lines=10)
hybrid_plot = gr.Image(label="Visualization")
hybrid_button.click(
interface.hybrid_processing_demo,
inputs=[data_size, quantum_component],
outputs=[hybrid_output, hybrid_plot]
)
gr.Markdown("""
---
### About
This Quantum AI Agent demonstrates the integration of classical AI techniques with quantum computing algorithms.
It showcases optimization strategies for VQE and QAOA, error mitigation using neural networks,
intelligent resource management, and hybrid quantum-classical processing.
**Note**: This is a simulation for demonstration purposes. Real quantum hardware integration would require
additional components and API connections.
""")
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)