|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import json |
|
import matplotlib.pyplot as plt |
|
import plotly.graph_objects as go |
|
import plotly.express as px |
|
from typing import Dict, List, Tuple, Any |
|
import logging |
|
|
|
|
|
from quantum_agent import QuantumAIAgent, QuantumState, QuantumCircuit |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
class QuantumAIInterface: |
|
"""Gradio interface for the Quantum AI Agent.""" |
|
|
|
def __init__(self): |
|
self.agent = QuantumAIAgent() |
|
logger.info("Quantum AI Interface initialized") |
|
|
|
def optimize_vqe(self, num_qubits: int, optimization_steps: int) -> Tuple[str, str]: |
|
"""VQE optimization interface.""" |
|
try: |
|
|
|
dim = 2**num_qubits |
|
hamiltonian = np.random.random((dim, dim)) |
|
hamiltonian = hamiltonian + hamiltonian.T |
|
|
|
|
|
initial_params = np.random.random(num_qubits * 2) |
|
|
|
|
|
result = self.agent.optimize_quantum_algorithm("VQE", hamiltonian, initial_params) |
|
|
|
|
|
result_text = f""" |
|
VQE Optimization Results: |
|
======================== |
|
Ground State Energy: {result['ground_state_energy']:.6f} |
|
Optimization Success: {result['optimization_success']} |
|
Number of Iterations: {result['iterations']} |
|
Optimal Parameters: {np.array2string(result['optimal_parameters'], precision=4)} |
|
Circuit Depth: {result['optimal_circuit'].depth} |
|
""" |
|
|
|
|
|
fig = plt.figure(figsize=(10, 6)) |
|
plt.subplot(1, 2, 1) |
|
plt.plot(result['optimal_parameters'], 'bo-') |
|
plt.title('Optimal Parameters') |
|
plt.xlabel('Parameter Index') |
|
plt.ylabel('Value') |
|
|
|
plt.subplot(1, 2, 2) |
|
plt.bar(range(len(result['optimal_parameters'])), result['optimal_parameters']) |
|
plt.title('Parameter Distribution') |
|
plt.xlabel('Parameter Index') |
|
plt.ylabel('Value') |
|
|
|
plt.tight_layout() |
|
plt.savefig('vqe_results.png', dpi=150, bbox_inches='tight') |
|
plt.close() |
|
|
|
return result_text, 'vqe_results.png' |
|
|
|
except Exception as e: |
|
error_msg = f"Error in VQE optimization: {str(e)}" |
|
logger.error(error_msg) |
|
return error_msg, None |
|
|
|
def optimize_qaoa(self, num_qubits: int, num_layers: int) -> Tuple[str, str]: |
|
"""QAOA optimization interface.""" |
|
try: |
|
|
|
dim = 2**num_qubits |
|
hamiltonian = np.random.random((dim, dim)) |
|
hamiltonian = hamiltonian + hamiltonian.T |
|
|
|
|
|
initial_params = np.random.random(2 * num_layers) |
|
|
|
|
|
result = self.agent.optimize_quantum_algorithm("QAOA", hamiltonian, initial_params) |
|
|
|
result_text = f""" |
|
QAOA Optimization Results: |
|
========================= |
|
Optimal Value: {result['optimal_value']:.6f} |
|
Optimization Success: {result['optimization_success']} |
|
Number of Iterations: {result['iterations']} |
|
Optimal Beta: {np.array2string(result['optimal_beta'], precision=4)} |
|
Optimal Gamma: {np.array2string(result['optimal_gamma'], precision=4)} |
|
""" |
|
|
|
|
|
fig = plt.figure(figsize=(12, 5)) |
|
|
|
plt.subplot(1, 3, 1) |
|
plt.plot(result['optimal_beta'], 'ro-', label='Beta') |
|
plt.plot(result['optimal_gamma'], 'bo-', label='Gamma') |
|
plt.title('QAOA Parameters') |
|
plt.xlabel('Layer') |
|
plt.ylabel('Value') |
|
plt.legend() |
|
|
|
plt.subplot(1, 3, 2) |
|
plt.bar(range(len(result['optimal_beta'])), result['optimal_beta'], alpha=0.7, label='Beta') |
|
plt.title('Beta Parameters') |
|
plt.xlabel('Layer') |
|
plt.ylabel('Value') |
|
|
|
plt.subplot(1, 3, 3) |
|
plt.bar(range(len(result['optimal_gamma'])), result['optimal_gamma'], alpha=0.7, label='Gamma', color='orange') |
|
plt.title('Gamma Parameters') |
|
plt.xlabel('Layer') |
|
plt.ylabel('Value') |
|
|
|
plt.tight_layout() |
|
plt.savefig('qaoa_results.png', dpi=150, bbox_inches='tight') |
|
plt.close() |
|
|
|
return result_text, 'qaoa_results.png' |
|
|
|
except Exception as e: |
|
error_msg = f"Error in QAOA optimization: {str(e)}" |
|
logger.error(error_msg) |
|
return error_msg, None |
|
|
|
def demonstrate_error_mitigation(self, num_qubits: int, noise_level: float) -> Tuple[str, str]: |
|
"""Error mitigation demonstration.""" |
|
try: |
|
|
|
dim = 2**num_qubits |
|
amplitudes = np.random.random(dim) + 1j * np.random.random(dim) |
|
amplitudes = amplitudes / np.linalg.norm(amplitudes) |
|
|
|
quantum_state = QuantumState( |
|
amplitudes=amplitudes, |
|
num_qubits=num_qubits, |
|
fidelity=1.0 - noise_level |
|
) |
|
|
|
|
|
noise_model = {"noise_factor": noise_level} |
|
corrected_state = self.agent.mitigate_errors(quantum_state, noise_model) |
|
|
|
result_text = f""" |
|
Error Mitigation Results: |
|
======================== |
|
Number of Qubits: {num_qubits} |
|
Original Fidelity: {quantum_state.fidelity:.4f} |
|
Corrected Fidelity: {corrected_state.fidelity:.4f} |
|
Fidelity Improvement: {corrected_state.fidelity - quantum_state.fidelity:.4f} |
|
Noise Level: {noise_level:.4f} |
|
""" |
|
|
|
|
|
fig = plt.figure(figsize=(12, 5)) |
|
|
|
plt.subplot(1, 3, 1) |
|
plt.bar(['Original', 'Corrected'], [quantum_state.fidelity, corrected_state.fidelity]) |
|
plt.title('Fidelity Comparison') |
|
plt.ylabel('Fidelity') |
|
plt.ylim(0, 1) |
|
|
|
plt.subplot(1, 3, 2) |
|
plt.plot(np.abs(quantum_state.amplitudes), 'b-', label='Original', alpha=0.7) |
|
plt.plot(np.abs(corrected_state.amplitudes), 'r-', label='Corrected', alpha=0.7) |
|
plt.title('State Amplitudes (Magnitude)') |
|
plt.xlabel('Basis State') |
|
plt.ylabel('Amplitude') |
|
plt.legend() |
|
|
|
plt.subplot(1, 3, 3) |
|
improvement = corrected_state.fidelity - quantum_state.fidelity |
|
plt.bar(['Fidelity Improvement'], [improvement], color='green' if improvement > 0 else 'red') |
|
plt.title('Improvement') |
|
plt.ylabel('Fidelity Change') |
|
|
|
plt.tight_layout() |
|
plt.savefig('error_mitigation_results.png', dpi=150, bbox_inches='tight') |
|
plt.close() |
|
|
|
return result_text, 'error_mitigation_results.png' |
|
|
|
except Exception as e: |
|
error_msg = f"Error in error mitigation: {str(e)}" |
|
logger.error(error_msg) |
|
return error_msg, None |
|
|
|
def optimize_resources(self, num_circuits: int, max_qubits: int, available_qubits: int) -> Tuple[str, str]: |
|
"""Resource optimization demonstration.""" |
|
try: |
|
|
|
circuits = [] |
|
for i in range(num_circuits): |
|
num_qubits = np.random.randint(2, min(max_qubits, available_qubits) + 1) |
|
depth = np.random.randint(5, 50) |
|
circuits.append(QuantumCircuit([], np.array([]), num_qubits, depth)) |
|
|
|
|
|
allocation_plan = self.agent.optimize_resources(circuits, available_qubits) |
|
|
|
result_text = f""" |
|
Resource Optimization Results: |
|
============================= |
|
Number of Circuits: {num_circuits} |
|
Available Qubits: {available_qubits} |
|
Resource Utilization: {allocation_plan['resource_utilization']:.2%} |
|
Estimated Runtime: {allocation_plan['estimated_runtime']:.2f} time units |
|
Scheduled Circuits: {len(allocation_plan['schedule'])} |
|
""" |
|
|
|
if allocation_plan['schedule']: |
|
result_text += "\nSchedule Details:\n" |
|
for i, task in enumerate(allocation_plan['schedule'][:5]): |
|
result_text += f"Circuit {task['circuit_id']}: {task['qubits_allocated']} qubits, starts at {task['start_time']:.2f}\n" |
|
|
|
|
|
fig = plt.figure(figsize=(12, 8)) |
|
|
|
|
|
plt.subplot(2, 2, 1) |
|
plt.pie([allocation_plan['resource_utilization'], 1 - allocation_plan['resource_utilization']], |
|
labels=['Used', 'Available'], autopct='%1.1f%%') |
|
plt.title('Resource Utilization') |
|
|
|
|
|
plt.subplot(2, 2, 2) |
|
qubit_reqs = [c.num_qubits for c in circuits] |
|
plt.hist(qubit_reqs, bins=min(10, max_qubits), alpha=0.7) |
|
plt.title('Circuit Qubit Requirements') |
|
plt.xlabel('Number of Qubits') |
|
plt.ylabel('Frequency') |
|
|
|
|
|
plt.subplot(2, 2, 3) |
|
depths = [c.depth for c in circuits] |
|
plt.hist(depths, bins=10, alpha=0.7, color='orange') |
|
plt.title('Circuit Depths') |
|
plt.xlabel('Depth') |
|
plt.ylabel('Frequency') |
|
|
|
|
|
plt.subplot(2, 2, 4) |
|
if allocation_plan['schedule']: |
|
start_times = [task['start_time'] for task in allocation_plan['schedule']] |
|
durations = [task['estimated_duration'] for task in allocation_plan['schedule']] |
|
plt.barh(range(len(start_times)), durations, left=start_times, alpha=0.7) |
|
plt.title('Schedule Timeline') |
|
plt.xlabel('Time') |
|
plt.ylabel('Circuit') |
|
|
|
plt.tight_layout() |
|
plt.savefig('resource_optimization_results.png', dpi=150, bbox_inches='tight') |
|
plt.close() |
|
|
|
return result_text, 'resource_optimization_results.png' |
|
|
|
except Exception as e: |
|
error_msg = f"Error in resource optimization: {str(e)}" |
|
logger.error(error_msg) |
|
return error_msg, None |
|
|
|
def hybrid_processing_demo(self, data_size: int, quantum_component: str) -> Tuple[str, str]: |
|
"""Hybrid processing demonstration.""" |
|
try: |
|
|
|
classical_data = np.random.random(data_size) |
|
|
|
|
|
result = self.agent.hybrid_processing(classical_data, quantum_component) |
|
|
|
result_text = f""" |
|
Hybrid Processing Results: |
|
========================= |
|
Input Data Size: {data_size} |
|
Quantum Component: {quantum_component} |
|
Output Statistics: |
|
Mean: {result['final_result']['statistics']['mean']:.6f} |
|
Std: {result['final_result']['statistics']['std']:.6f} |
|
Min: {result['final_result']['statistics']['min']:.6f} |
|
Max: {result['final_result']['statistics']['max']:.6f} |
|
Confidence: {result['final_result']['confidence']:.4f} |
|
""" |
|
|
|
|
|
fig = plt.figure(figsize=(15, 5)) |
|
|
|
plt.subplot(1, 3, 1) |
|
plt.plot(classical_data, 'b-', alpha=0.7) |
|
plt.title('Original Classical Data') |
|
plt.xlabel('Index') |
|
plt.ylabel('Value') |
|
|
|
plt.subplot(1, 3, 2) |
|
plt.plot(result['preprocessed_data'], 'g-', alpha=0.7) |
|
plt.title('Preprocessed Data') |
|
plt.xlabel('Index') |
|
plt.ylabel('Value') |
|
|
|
plt.subplot(1, 3, 3) |
|
plt.plot(result['quantum_result'].flatten(), 'r-', alpha=0.7) |
|
plt.title(f'Quantum Result ({quantum_component})') |
|
plt.xlabel('Index') |
|
plt.ylabel('Value') |
|
|
|
plt.tight_layout() |
|
plt.savefig('hybrid_processing_results.png', dpi=150, bbox_inches='tight') |
|
plt.close() |
|
|
|
return result_text, 'hybrid_processing_results.png' |
|
|
|
except Exception as e: |
|
error_msg = f"Error in hybrid processing: {str(e)}" |
|
logger.error(error_msg) |
|
return error_msg, None |
|
|
|
def create_interface(): |
|
"""Create the Gradio interface.""" |
|
interface = QuantumAIInterface() |
|
|
|
with gr.Blocks(title="Quantum AI Agent", theme=gr.themes.Soft()) as demo: |
|
gr.Markdown(""" |
|
# π Quantum AI Agent |
|
|
|
This is an AI agent designed to optimize quantum computing algorithms using classical machine learning techniques. |
|
|
|
## Features: |
|
- **Algorithm Optimization**: VQE, QAOA, QNN parameter optimization |
|
- **Error Mitigation**: AI-powered quantum error correction |
|
- **Resource Management**: Intelligent qubit allocation and scheduling |
|
- **Hybrid Processing**: Quantum-classical algorithm integration |
|
""") |
|
|
|
with gr.Tabs(): |
|
|
|
with gr.TabItem("π¬ VQE Optimization"): |
|
gr.Markdown("### Variational Quantum Eigensolver") |
|
with gr.Row(): |
|
with gr.Column(): |
|
vqe_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits") |
|
vqe_steps = gr.Slider(10, 1000, value=100, step=10, label="Optimization Steps") |
|
vqe_button = gr.Button("Optimize VQE", variant="primary") |
|
|
|
with gr.Column(): |
|
vqe_output = gr.Textbox(label="Results", lines=10) |
|
vqe_plot = gr.Image(label="Visualization") |
|
|
|
vqe_button.click( |
|
interface.optimize_vqe, |
|
inputs=[vqe_qubits, vqe_steps], |
|
outputs=[vqe_output, vqe_plot] |
|
) |
|
|
|
|
|
with gr.TabItem("π― QAOA Optimization"): |
|
gr.Markdown("### Quantum Approximate Optimization Algorithm") |
|
with gr.Row(): |
|
with gr.Column(): |
|
qaoa_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits") |
|
qaoa_layers = gr.Slider(1, 5, value=2, step=1, label="Number of Layers") |
|
qaoa_button = gr.Button("Optimize QAOA", variant="primary") |
|
|
|
with gr.Column(): |
|
qaoa_output = gr.Textbox(label="Results", lines=10) |
|
qaoa_plot = gr.Image(label="Visualization") |
|
|
|
qaoa_button.click( |
|
interface.optimize_qaoa, |
|
inputs=[qaoa_qubits, qaoa_layers], |
|
outputs=[qaoa_output, qaoa_plot] |
|
) |
|
|
|
|
|
with gr.TabItem("π‘οΈ Error Mitigation"): |
|
gr.Markdown("### Quantum Error Correction") |
|
with gr.Row(): |
|
with gr.Column(): |
|
error_qubits = gr.Slider(2, 5, value=3, step=1, label="Number of Qubits") |
|
noise_level = gr.Slider(0.0, 0.5, value=0.1, step=0.01, label="Noise Level") |
|
error_button = gr.Button("Apply Error Mitigation", variant="primary") |
|
|
|
with gr.Column(): |
|
error_output = gr.Textbox(label="Results", lines=10) |
|
error_plot = gr.Image(label="Visualization") |
|
|
|
error_button.click( |
|
interface.demonstrate_error_mitigation, |
|
inputs=[error_qubits, noise_level], |
|
outputs=[error_output, error_plot] |
|
) |
|
|
|
|
|
with gr.TabItem("β‘ Resource Management"): |
|
gr.Markdown("### Quantum Resource Optimization") |
|
with gr.Row(): |
|
with gr.Column(): |
|
num_circuits = gr.Slider(3, 20, value=10, step=1, label="Number of Circuits") |
|
max_qubits = gr.Slider(2, 10, value=5, step=1, label="Max Qubits per Circuit") |
|
available_qubits = gr.Slider(5, 20, value=10, step=1, label="Available Qubits") |
|
resource_button = gr.Button("Optimize Resources", variant="primary") |
|
|
|
with gr.Column(): |
|
resource_output = gr.Textbox(label="Results", lines=10) |
|
resource_plot = gr.Image(label="Visualization") |
|
|
|
resource_button.click( |
|
interface.optimize_resources, |
|
inputs=[num_circuits, max_qubits, available_qubits], |
|
outputs=[resource_output, resource_plot] |
|
) |
|
|
|
|
|
with gr.TabItem("π Hybrid Processing"): |
|
gr.Markdown("### Quantum-Classical Hybrid Algorithms") |
|
with gr.Row(): |
|
with gr.Column(): |
|
data_size = gr.Slider(10, 100, value=50, step=5, label="Data Size") |
|
quantum_component = gr.Dropdown( |
|
["quantum_kernel", "quantum_feature_map", "quantum_neural_layer"], |
|
value="quantum_kernel", |
|
label="Quantum Component" |
|
) |
|
hybrid_button = gr.Button("Run Hybrid Processing", variant="primary") |
|
|
|
with gr.Column(): |
|
hybrid_output = gr.Textbox(label="Results", lines=10) |
|
hybrid_plot = gr.Image(label="Visualization") |
|
|
|
hybrid_button.click( |
|
interface.hybrid_processing_demo, |
|
inputs=[data_size, quantum_component], |
|
outputs=[hybrid_output, hybrid_plot] |
|
) |
|
|
|
gr.Markdown(""" |
|
--- |
|
### About |
|
This Quantum AI Agent demonstrates the integration of classical AI techniques with quantum computing algorithms. |
|
It showcases optimization strategies for VQE and QAOA, error mitigation using neural networks, |
|
intelligent resource management, and hybrid quantum-classical processing. |
|
|
|
**Note**: This is a simulation for demonstration purposes. Real quantum hardware integration would require |
|
additional components and API connections. |
|
""") |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_interface() |
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
share=True |
|
) |