Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
from keras.preprocessing import image | |
from Model_Load import load_model_from_files | |
from description import description | |
# Load model dan label | |
model = load_model_from_files("model.json", "my_model.h5") | |
labels = [ | |
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan", | |
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi", | |
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta" | |
] | |
# Fungsi preprocessing dan prediksi | |
def classify_image(img): | |
img = img.resize((224, 224)) | |
img_array = image.img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = img_array / 255.0 | |
pred = model.predict(img_array)[0] | |
confidence = np.max(pred) | |
predicted_label = labels[np.argmax(pred)] | |
if confidence < 0.5: | |
return "Tidak dapat dikenali", "Tolong arahkan ke objek yang jelas agar bisa diidentifikasikan. Pastikan anda berada di salah satu tempat Benteng_Vredeburg Candi_Borobudur, Candi_Prambanan, Gedung_Agung_Istana_Kepresidenan_Yogyakarta, Masjid_Gedhe_Kauman, Monumen_Serangan_1Maret, Museum_Gunungapi_Merapi, Situs_Ratu_Boko, Taman_Sari, Tugu_Yogyakarta" | |
else: | |
deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.") | |
label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)" | |
return label_output, deskripsi | |
# Buat antarmuka Gradio | |
demo = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil", label="Upload Gambar"), | |
outputs=[ | |
gr.Textbox(label="Output Klasifikasi"), | |
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50) | |
], | |
allow_flagging="never", | |
title="Klasifikasi Gambar", | |
description="Upload gambar kami akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut." | |
) | |
# Launch untuk Hugging Face Spaces | |
if __name__ == "__main__": | |
demo.launch() |