|
|
|
|
|
|
|
import os |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import huggingface_hub |
|
import gc |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
from torchvision.transforms.functional import normalize |
|
from dreamo.dreamo_pipeline import DreamOPipeline |
|
from dreamo.utils import img2tensor, tensor2img |
|
from tools import BEN2 |
|
|
|
class Generator: |
|
def __init__(self): |
|
self.cpu_device = torch.device('cpu') |
|
self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
print("Carregando modelos DreamO para a CPU...") |
|
model_root = 'black-forest-labs/FLUX.1-dev' |
|
self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16) |
|
self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True) |
|
|
|
self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval() |
|
huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models') |
|
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth') |
|
|
|
self.face_helper = FaceRestoreHelper( |
|
upscale_factor=1, face_size=512, crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device, |
|
) |
|
print("Modelos DreamO prontos (na CPU).") |
|
|
|
def to_gpu(self): |
|
if self.gpu_device.type == 'cpu': return |
|
print("Movendo modelos DreamO para a GPU...") |
|
self.dreamo_pipeline.to(self.gpu_device) |
|
self.bg_rm_model.to(self.gpu_device) |
|
self.face_helper.device = self.gpu_device |
|
self.dreamo_pipeline.t5_embedding.to(self.gpu_device) |
|
self.dreamo_pipeline.task_embedding.to(self.gpu_device) |
|
self.dreamo_pipeline.idx_embedding.to(self.gpu_device) |
|
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device) |
|
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device) |
|
print("Modelos DreamO na GPU.") |
|
|
|
def to_cpu(self): |
|
if self.gpu_device.type == 'cpu': return |
|
print("Descarregando modelos DreamO da GPU...") |
|
self.dreamo_pipeline.to(self.cpu_device) |
|
self.bg_rm_model.to(self.cpu_device) |
|
self.face_helper.device = self.cpu_device |
|
self.dreamo_pipeline.t5_embedding.to(self.cpu_device) |
|
self.dreamo_pipeline.task_embedding.to(self.cpu_device) |
|
self.dreamo_pipeline.idx_embedding.to(self.cpu_device) |
|
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device) |
|
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device) |
|
gc.collect() |
|
if torch.cuda.is_available(): torch.cuda.empty_cache() |
|
|
|
@torch.inference_mode() |
|
|
|
def generate_image_with_gpu_management(self, reference_items, prompt, width, height): |
|
ref_conds = [] |
|
|
|
for idx, item in enumerate(reference_items): |
|
ref_image_np = item.get('image_np') |
|
ref_task = item.get('task') |
|
|
|
if ref_image_np is not None: |
|
if ref_task == "id": |
|
ref_image = self.get_align_face(ref_image_np) |
|
elif ref_task != "style": |
|
ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np)) |
|
else: |
|
ref_image = ref_image_np |
|
|
|
ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0 |
|
ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16) |
|
|
|
|
|
ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1}) |
|
|
|
image = self.dreamo_pipeline( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=12, |
|
guidance_scale=4.5, |
|
ref_conds=ref_conds, |
|
generator=torch.Generator(device="cpu").manual_seed(42) |
|
).images[0] |
|
return image |
|
|
|
@torch.no_grad() |
|
def get_align_face(self, img): |
|
|
|
self.face_helper.clean_all() |
|
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) |
|
self.face_helper.read_image(image_bgr) |
|
self.face_helper.get_face_landmarks_5(only_center_face=True) |
|
self.face_helper.align_warp_face() |
|
if len(self.face_helper.cropped_faces) == 0: return None |
|
align_face = self.face_helper.cropped_faces[0] |
|
input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 |
|
input_tensor = input_tensor.to(self.gpu_device) |
|
parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] |
|
parsing_out = parsing_out.argmax(dim=1, keepdim=True) |
|
bg_label = [0, 16, 18, 7, 8, 9, 14, 15] |
|
bg = sum(parsing_out == i for i in bg_label).bool() |
|
white_image = torch.ones_like(input_tensor) |
|
face_features_image = torch.where(bg, white_image, input_tensor) |
|
return tensor2img(face_features_image, rgb2bgr=False) |
|
|
|
|
|
print("Inicializando o Pintor de Cenas (DreamO Helper)...") |
|
hf_token = os.getenv('HF_TOKEN') |
|
if hf_token: huggingface_hub.login(token=hf_token) |
|
dreamo_generator_singleton = Generator() |
|
print("Pintor de Cenas (DreamO Helper) pronto.") |