SMILES2PEPTIDE / app.py
yinuozhang's picture
debug
07cdc1e
raw
history blame
48.6 kB
import os
import gradio as gr
import gradio.blocks
import re
import pandas as pd
from io import StringIO
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from io import BytesIO
import tempfile
from rdkit import Chem
class PeptideAnalyzer:
def __init__(self):
self.bond_patterns = [
#(r'OC\(=O\)', 'ester'), # Ester bond
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond
(r'N[0-9]C\(=O\)', 'proline'), # Proline peptide bond
(r'NC\(=O\)', 'peptide'), # Standard peptide bond
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
]
self.complex_residue_patterns = [
# Kpg - Lys(palmitoyl-Glu-OtBu) - Exact pattern for the specific structure
(r'\[C[@]H\]\(CCCNC\(=O\)CCC\[C@@H\]\(NC\(=O\)CCCCCCCCCCCCCCCC\)C\(=O\)OC\(C\)\(C\)C\)', 'Kpg'),
(r'CCCCCCCCCCCCCCCCC\(=O\)N\[C@H\]\(CCCC\(=O\)NCCC\[C@@H\]', 'Kpg'),
(r'\[C@*H\]\(CSC\(c\d+ccccc\d+\)\(c\d+ccccc\d+\)c\d+ccc\(OC\)cc\d+\)', 'Cmt'),
(r'CSC\(c.*?c.*?OC\)', 'Cmt'), # Core structure of Cys-Mmt group
(r'COc.*?ccc\(C\(SC', 'Cmt'), # Start of Cmt in cyclic peptides
(r'c2ccccc2\)c2ccccc2\)cc', 'Cmt'), # End of Cmt in cyclic peptides
# Glu(OAll) - Only match the complete pattern to avoid partial matches
(r'C=CCOC\(=O\)CC\[C@@H\]', 'Eal'),
(r'\(C\)OP\(=O\)\(O\)OCc\d+ccccc\d+', 'Tpb'),
#(r'COc\d+ccc\(C\(SC\[C@@H\]\d+.*?\)\(c\d+ccccc\d+\)c\d+ccccc\d+\)cc\d+', 'Cmt-cyclic'),
# Dtg - Asp(OtBu)-(Dmb)Gly - Full pattern
(r'CN\(Cc\d+ccc\(OC\)cc\d+OC\)C\(=O\)\[C@H\]\(CC\(=O\)OC\(C\)\(C\)C\)', 'Dtg'),
(r'C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
(r'N\[C@@H\]\(CC\(=O\)OC\(C\)\(C\)C\)C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
]
# Three to one letter code mapping
self.three_to_one = {
'Ala': 'A', 'Cys': 'C', 'Asp': 'D', 'Glu': 'E',
'Phe': 'F', 'Gly': 'G', 'His': 'H', 'Ile': 'I',
'Lys': 'K', 'Leu': 'L', 'Met': 'M', 'Asn': 'N',
'Pro': 'P', 'Gln': 'Q', 'Arg': 'R', 'Ser': 'S',
'Thr': 'T', 'Val': 'V', 'Trp': 'W', 'Tyr': 'Y',
'ala': 'a', 'cys': 'c', 'asp': 'd', 'glu': 'e',
'phe': 'f', 'gly': 'g', 'his': 'h', 'ile': 'i',
'lys': 'k', 'leu': 'l', 'met': 'm', 'asn': 'n',
'pro': 'p', 'gln': 'q', 'arg': 'r', 'ser': 's',
'thr': 't', 'val': 'v', 'trp': 'w', 'tyr': 'y', 'Cmt-cyclic': 'Ĉ',
'Aib': 'Ŷ', 'Dtg': 'Ĝ', 'Cmt': 'Ĉ', 'Eal': 'Ė', 'Nml': "Ŀ", 'Nma': 'Ṃ',
'Kpg': 'Ƙ', 'Tpb': 'Ṯ', 'Cyl': 'Ċ', 'Nle': 'Ł', 'Hph': 'Ĥ', 'Cys-Cys': 'CC', 'cys-cys': 'cc',
}
def preprocess_complex_residues(self, smiles):
"""Identify and protect complex residues with internal peptide bonds - improved to prevent overlaps"""
# Create a mapping of positions to complex residue types
complex_positions = []
# Search for all complex residue patterns
for pattern, residue_type in self.complex_residue_patterns:
for match in re.finditer(pattern, smiles):
# Only add if this position doesn't overlap with existing matches
if not any(pos['start'] <= match.start() < pos['end'] or
pos['start'] < match.end() <= pos['end'] for pos in complex_positions):
complex_positions.append({
'start': match.start(),
'end': match.end(),
'type': residue_type,
'pattern': match.group()
})
# Sort by position (to handle potential overlapping matches)
complex_positions.sort(key=lambda x: x['start'])
# If no complex residues found, return original SMILES
if not complex_positions:
return smiles, []
# Build a new SMILES string, protecting complex residues
preprocessed_smiles = smiles
offset = 0 # Track offset from replacements
protected_residues = []
for pos in complex_positions:
# Adjust positions based on previous replacements
start = pos['start'] + offset
end = pos['end'] + offset
# Extract the complex residue part
complex_part = preprocessed_smiles[start:end]
# Verify this is a complete residue (should have proper amino acid structure)
if not ('[C@H]' in complex_part or '[C@@H]' in complex_part):
continue # Skip if not a proper amino acid structure
# Create a placeholder for this complex residue
placeholder = f"COMPLEX_RESIDUE_{len(protected_residues)}"
# Replace the complex part with the placeholder
preprocessed_smiles = preprocessed_smiles[:start] + placeholder + preprocessed_smiles[end:]
# Track the offset change
offset += len(placeholder) - (end - start)
# Store the residue information
protected_residues.append({
'placeholder': placeholder,
'type': pos['type'],
'content': complex_part
})
#print(f"Protected {pos['type']}: {complex_part[:20]}... as {placeholder}")
return preprocessed_smiles, protected_residues
def split_on_bonds(self, smiles, protected_residues=None):
"""Split SMILES into segments based on peptide bonds, with improved handling of protected residues"""
positions = []
used = set()
# First, handle protected complex residues if any
if protected_residues:
for residue in protected_residues:
match = re.search(residue['placeholder'], smiles)
if match:
positions.append({
'start': match.start(),
'end': match.end(),
'type': 'complex',
'pattern': residue['placeholder'],
'residue_type': residue['type'],
'content': residue['content']
})
used.update(range(match.start(), match.end()))
# Find all peptide bonds
bond_positions = []
# Find Gly pattern first
gly_pattern = r'NCC\(=O\)'
for match in re.finditer(gly_pattern, smiles):
if not any(p in range(match.start(), match.end()) for p in used):
bond_positions.append({
'start': match.start(),
'end': match.end(),
'type': 'gly',
'pattern': match.group()
})
used.update(range(match.start(), match.end()))
# Then find all other bonds
for pattern, bond_type in self.bond_patterns:
for match in re.finditer(pattern, smiles):
if not any(p in range(match.start(), match.end()) for p in used):
bond_positions.append({
'start': match.start(),
'end': match.end(),
'type': bond_type,
'pattern': match.group()
})
used.update(range(match.start(), match.end()))
# Sort all positions
bond_positions.sort(key=lambda x: x['start'])
# Combine complex residue positions and bond positions
all_positions = positions + bond_positions
all_positions.sort(key=lambda x: x['start'])
# Create segments
segments = []
# First segment (if not starting with a bond or complex residue)
if all_positions and all_positions[0]['start'] > 0:
segments.append({
'content': smiles[0:all_positions[0]['start']],
'bond_after': all_positions[0]['pattern'] if all_positions[0]['type'] != 'complex' else None,
'complex_after': all_positions[0]['pattern'] if all_positions[0]['type'] == 'complex' else None
})
# Process segments between positions
for i in range(len(all_positions)-1):
current = all_positions[i]
next_pos = all_positions[i+1]
# Handle complex residues
if current['type'] == 'complex':
segments.append({
'content': current['content'],
'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None,
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None,
'complex_type': current['residue_type']
})
# Handle regular bonds
elif current['type'] == 'gly':
segments.append({
'content': 'NCC(=O)',
'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None,
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
})
else:
# Only create segment if there's content between this bond and next position
content = smiles[current['end']:next_pos['start']]
if content and next_pos['type'] != 'complex':
segments.append({
'content': content,
'bond_before': current['pattern'],
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
})
# Last segment
if all_positions and all_positions[-1]['end'] < len(smiles):
if all_positions[-1]['type'] == 'complex':
segments.append({
'content': all_positions[-1]['content'],
'bond_before': all_positions[-2]['pattern'] if len(all_positions) > 1 and all_positions[-2]['type'] != 'complex' else None,
'complex_type': all_positions[-1]['residue_type']
})
else:
segments.append({
'content': smiles[all_positions[-1]['end']:],
'bond_before': all_positions[-1]['pattern']
})
return segments
def is_peptide(self, smiles):
"""Check if the SMILES represents a peptide structure"""
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return False
# Look for peptide bonds: NC(=O) pattern
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
if mol.HasSubstructMatch(peptide_bond_pattern):
return True
# Look for N-methylated peptide bonds: N(C)C(=O) pattern
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
if mol.HasSubstructMatch(n_methyl_pattern):
return True
return False
def is_cyclic(self, smiles):
"""Improved cyclic peptide detection"""
# Check for C-terminal carboxyl
if smiles.endswith('C(=O)O'):
return False, [], []
# Find all numbers used in ring closures
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles)
# Find aromatic ring numbers
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
aromatic_cycles = []
for match in aromatic_matches:
numbers = re.findall(r'[0-9]', match)
aromatic_cycles.extend(numbers)
# Numbers that aren't part of aromatic rings are peptide cycles
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O')
return is_cyclic, peptide_cycles, aromatic_cycles
def clean_terminal_carboxyl(self, segment):
"""Remove C-terminal carboxyl only if it's the true terminus"""
content = segment['content']
# Only clean if:
# 1. Contains C(=O)O
# 2. No bond_after exists (meaning it's the last segment)
if 'C(=O)O' in content and not segment.get('bond_after'):
# Remove C(=O)O pattern regardless of position
cleaned = re.sub(r'\(C\(=O\)O\)', '', content)
# Remove any leftover empty parentheses
cleaned = re.sub(r'\(\)', '', cleaned)
return cleaned
return content
def identify_residue(self, segment):
"""Identify residue with Pro reconstruction"""
# Only clean terminal carboxyl if this is the last segment
if 'complex_type' in segment:
return segment['complex_type'], []
content = self.clean_terminal_carboxyl(segment)
mods = self.get_modifications(segment)
if content.startswith('COc1ccc(C(SC[C@@H]'):
print("DIRECT MATCH: Found Cmt at beginning")
return 'Cmt', mods
# VERY EXPLICIT check for the last segment in your example
if '[C@@H]3CCCN3C2=O)(c2ccccc2)c2ccccc2)cc' in content:
print("DIRECT MATCH: Found Pro at end")
return 'Pro', mods
# === Original amino acid patterns ===
# Eal - Glu(OAll) - Multiple patterns
if 'CCC(=O)OCC=C' in content or 'CC(=O)OCC=C' in content or 'C=CCOC(=O)CC' in content:
return 'Eal', mods
# Proline (P) - flexible ring numbers
if any([
# Check for any ring number in bond patterns
(segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
for n in '123456789'
]) or any([(segment.get('bond_before', '').startswith(f'C(=O)N{n}') and 'CCC' in content and
any(f'CCC{n}' for n in '123456789'))
for n in '123456789'
]) or any([
# Check ending patterns with any ring number
(f'CCCN{n}' in content and content.endswith('=O') and
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
for n in '123456789'
]) or any([
# Handle CCC[C@H]n patterns
(content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
(content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
# N-terminal Pro with any ring number
(f'N{n}CCC[C@H]{n}' in content) or
(f'N{n}CCC[C@@H]{n}' in content)
for n in '123456789'
]):
return 'Pro', mods
# D-Proline (p)
if ('N1[C@H](CCC1)' in content):
return 'pro', mods
# Tryptophan (W) - more specific indole pattern
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
'c[nH]c' in content.replace(' ', ''):
# Check stereochemistry for D/L
if '[C@H](CC' in content: # D-form
return 'trp', mods
return 'Trp', mods
# Lysine (K) - both patterns
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
# Check stereochemistry for D/L
if '[C@H](CCCCN)' in content: # D-form
return 'lys', mods
return 'Lys', mods
# Arginine (R) - both patterns
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
# Check stereochemistry for D/L
if '[C@H](CCCNC(=N)N)' in content: # D-form
return 'arg', mods
return 'Arg', mods
# Regular residue identification
if content == 'C' and segment.get('bond_before') and segment.get('bond_after'):
# If it's surrounded by peptide bonds, it's almost certainly Gly
if ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \
('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
return 'Gly', mods
# Case 2: Cyclic terminal glycine - typically contains 'CNC' with ring closure
if 'CNC' in content and any(f'C{i}=' in content for i in range(1, 10)):
return 'Gly', mods # This will catch patterns like 'CNC1=O'
if not segment.get('bond_before') and segment.get('bond_after'):
if content == 'C' or content == 'NC':
if ('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
return 'Gly', mods
# Leucine patterns (L/l)
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None):
# Check stereochemistry for D/L
if '[C@H](CC(C)C)' in content or 'CC(C)C[C@H]' in content: # D-form
return 'leu', mods
return 'Leu', mods
# Threonine patterns (T/t)
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H]([C@H](C)O)' in content or '[C@H]([C@@H](C)O)' in content:
# Check both stereochemistry patterns
if '[C@H]([C@@H](C)O)' in content: # D-form
return 'thr', mods
return 'Thr', mods
if re.search(r'\[C@H\]\(CCc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(CCc\d+ccccc\d+\)', content):
return 'Hph', mods
# Phenylalanine patterns (F/f)
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content):
# Check stereochemistry for D/L
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content): # D-form
return 'phe', mods
return 'Phe', mods
if ('CC(C)[C@@H]' in content or 'CC(C)[C@H]' in content or
'[C@H](C(C)C)' in content or '[C@@H](C(C)C)' in content or
'C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content):
# Make sure it's not leucine
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]', 'CCC(=O)']):
# Check stereochemistry
if '[C@H]' in content and not '[C@@H]' in content: # D-form
return 'val', mods
return 'Val', mods
# Isoleucine patterns (I/i)
# First check for various isoleucine patterns while excluding valine
if (any(['CC[C@@H](C)' in content, '[C@@H](C)CC' in content, '[C@@H](CC)C' in content,
'C(C)C[C@@H]' in content, '[C@@H]([C@H](C)CC)' in content, '[C@H]([C@@H](C)CC)' in content,
'[C@@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
'C[C@H](CC)[C@@H]' in content, 'C[C@@H](CC)[C@H]' in content,
'C[C@H](CC)[C@H]' in content, 'C[C@@H](CC)[C@@H]' in content,
'CC[C@H](C)[C@@H]' in content, 'CC[C@@H](C)[C@H]' in content,
'CC[C@H](C)[C@H]' in content, 'CC[C@@H](C)[C@@H]' in content])
and 'CC(C)C' not in content): # Exclude valine pattern
# Check stereochemistry for D/L forms
if any(['[C@H]([C@@H](CC)C)' in content, '[C@H](CC)C' in content,
'[C@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
'C[C@@H](CC)[C@H]' in content, 'C[C@H](CC)[C@H]' in content,
'CC[C@@H](C)[C@H]' in content, 'CC[C@H](C)[C@H]' in content]):
# D-form
return 'ile', mods
# All other stereochemistries are treated as L-form
return 'Ile', mods
# Tpb - Thr(PO(OBzl)OH) - Multiple patterns
if re.search(r'\(C\)OP\(=O\)\(O\)OCc[0-9]ccccc[0-9]', content) or 'OP(=O)(O)OCC' in content:
return 'Tpb', mods
# Alanine patterns (A/a)
if ('[C@H](C)' in content or '[C@@H](C)' in content):
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
# Check stereochemistry for D/L
if '[C@H](C)' in content: # D-form
return 'ala', mods
return 'Ala', mods
# Tyrosine patterns (Y/y)
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
# Check stereochemistry for D/L
if '[C@H](Cc1ccc(O)cc1)' in content: # D-form
return 'tyr', mods
return 'Tyr', mods
# Serine patterns (S/s)
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
if not ('C(C)O' in content or 'COC' in content):
# Check stereochemistry for D/L
if '[C@H](CO)' in content: # D-form
return 'ser', mods
return 'Ser', mods
if 'CSSC' in content:
# Check for various cysteine-cysteine bridge patterns
if re.search(r'\[C@@H\].*CSSC.*\[C@@H\]', content) or re.search(r'\[C@H\].*CSSC.*\[C@H\]', content):
if '[C@H]' in content and not '[C@@H]' in content: # D-form
return 'cys-cys', mods
return 'Cys-Cys', mods
# Pattern for cysteine with N-terminal amine group
if '[C@@H](N)CSSC' in content or '[C@H](N)CSSC' in content:
if '[C@H](N)CSSC' in content: # D-form
return 'cys-cys', mods
return 'Cys-Cys', mods
# Pattern for cysteine with C-terminal carboxyl
if 'CSSC[C@@H](C(=O)O)' in content or 'CSSC[C@H](C(=O)O)' in content:
if 'CSSC[C@H](C(=O)O)' in content: # D-form
return 'cys-cys', mods
return 'Cys-Cys', mods
# Cysteine patterns (C/c)
if '[C@H](CS)' in content or '[C@@H](CS)' in content:
# Check stereochemistry for D/L
if '[C@H](CS)' in content: # D-form
return 'cys', mods
return 'Cys', mods
# Methionine patterns (M/m)
if ('CCSC' in content) or ("CSCC" in content):
# Check stereochemistry for D/L
if '[C@H](CCSC)' in content: # D-form
return 'met', mods
elif '[C@H]' in content:
return 'met', mods
return 'Met', mods
# Glutamine patterns (Q/q)
if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content):
# Check stereochemistry for D/L
if '[C@H](CCC(=O)N)' in content: # D-form
return 'gln', mods
return 'Gln', mods
# Asparagine patterns (N/n)
if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content):
# Check stereochemistry for D/L
if '[C@H](CC(=O)N)' in content: # D-form
return 'asn', mods
return 'Asn', mods
# Glutamic acid patterns (E/e)
if ('CCC(=O)O' in content):
# Check stereochemistry for D/L
if '[C@H](CCC(=O)O)' in content: # D-form
return 'glu', mods
return 'Glu', mods
# Aspartic acid patterns (D/d)
if ('CC(=O)O' in content):
# Check stereochemistry for D/L
if '[C@H](CC(=O)O)' in content: # D-form
return 'asp', mods
return 'Asp', mods
if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content):
# Check stereochemistry for D/L
if '[C@H]' in content: # D-form
return 'his', mods
return 'His', mods
if 'C2(CCCC2)' in content or 'C1(CCCC1)' in content or re.search(r'C\d+\(CCCC\d+\)', content):
return 'Cyl', mods
if ('N[C@@H](CCCC)' in content or '[C@@H](CCCC)' in content or 'CCCC[C@@H]' in content or
'N[C@H](CCCC)' in content or '[C@H](CCCC)' in content) and 'CC(C)' not in content:
return 'Nle', mods
# Aib - alpha-aminoisobutyric acid (2-aminoisobutyric acid)
# More flexible pattern detection
if 'C(C)(C)(N)' in content:
return 'Aib', mods
# Partial Aib pattern but NOT part of t-butyl ester
if 'C(C)(C)' in content and 'OC(C)(C)C' not in content:
if (segment.get('bond_before') and segment.get('bond_after') and
any(bond in segment['bond_before'] for bond in ['C(=O)N', 'NC(=O)', 'N(C)C(=O)']) and
any(bond in segment['bond_after'] for bond in ['NC(=O)', 'C(=O)N', 'N(C)C(=O)'])):
return 'Aib', mods
# Dtg - Asp(OtBu)-(Dmb)Gly - Simplified pattern for better detection
if 'CC(=O)OC(C)(C)C' in content and 'CC1=C(C=C(C=C1)OC)OC' in content:
return 'Dtg', mods
# Kpg - Lys(palmitoyl-Glu-OtBu) - Simplified pattern
if 'CCCNC(=O)' in content and 'CCCCCCCCCCCC' in content:
return 'Kpg', mods
return None, mods
def get_modifications(self, segment):
"""Get modifications based on bond types and segment content - fixed to avoid duplicates"""
mods = []
# Check for N-methylation in any form, but only add it once
# Check both bonds and segment content for N-methylation patterns
if ((segment.get('bond_after') and
('N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'))) or
('N(C)C(=O)' in segment['content'] or 'N(C)C1=O' in segment['content']) or
(segment['content'].endswith('N(C)C(=O)') or segment['content'].endswith('N(C)C1=O'))):
mods.append('N-Me')
# Check for O-linked modifications
#if segment.get('bond_after') and 'OC(=O)' in segment['bond_after']:
#mods.append('O-linked')
return mods
def analyze_structure(self, smiles):
"""Main analysis function with preprocessing for complex residues"""
#print("\nAnalyzing structure:", smiles)
# Pre-process to identify complex residues first
preprocessed_smiles, protected_residues = self.preprocess_complex_residues(smiles)
"""
if protected_residues:
print(f"Identified {len(protected_residues)} complex residues during pre-processing")
for i, residue in enumerate(protected_residues):
print(f"Complex residue {i+1}: {residue['type']}")
"""
# Check if it's cyclic
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
# Split into segments, respecting protected residues
segments = self.split_on_bonds(preprocessed_smiles, protected_residues)
#print("\nSegment Analysis:")
sequence = []
for i, segment in enumerate(segments):
"""
print(f"\nSegment {i}:")
print(f"Content: {segment.get('content', 'None')}")
print(f"Bond before: {segment.get('bond_before', 'None')}")
print(f"Bond after: {segment.get('bond_after', 'None')}")
"""
residue, mods = self.identify_residue(segment)
if residue:
if mods:
sequence.append(f"{residue}({','.join(mods)})")
else:
sequence.append(residue)
#print(f"Identified as: {residue}")
#print(f"Modifications: {mods}")
else:
print(f"Warning: Could not identify residue in segment: {segment.get('content', 'None')}")
# Format the sequence
three_letter = '-'.join(sequence)
# Use the mapping to create one-letter code
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
if is_cyclic:
three_letter = f"cyclo({three_letter})"
one_letter = f"cyclo({one_letter})"
"""
print(f"\nFinal sequence: {three_letter}")
print(f"One-letter code: {one_letter}")
print(f"Is cyclic: {is_cyclic}")
print(f"Peptide cycles: {peptide_cycles}")
print(f"Aromatic cycles: {aromatic_cycles}")
"""
return {
'three_letter': three_letter,
'one_letter': one_letter,
'is_cyclic': is_cyclic,
'residues': sequence
}
def annotate_cyclic_structure(mol, sequence):
"""Create structure visualization"""
AllChem.Compute2DCoords(mol)
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)
# Draw molecule first
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
try:
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
except OSError:
try:
small_font = ImageFont.truetype("arial.ttf", 60)
except OSError:
print("Warning: TrueType fonts not available, using default font")
small_font = ImageFont.load_default()
# Header
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((1000, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
def create_enhanced_linear_viz(sequence, smiles):
""""Linear visualization"""
analyzer = PeptideAnalyzer()
fig = plt.figure(figsize=(15, 10))
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2])
ax_struct = fig.add_subplot(gs[0])
ax_detail = fig.add_subplot(gs[1])
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
segments = analyzer.split_on_bonds(smiles)
print(f"Number of residues: {len(residues)}")
print(f"Number of segments: {len(segments)}")
ax_struct.set_xlim(0, 10)
ax_struct.set_ylim(0, 2)
num_residues = len(residues)
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0
y_pos = 1.5
for i in range(num_residues):
x_pos = 0.5 + i * spacing
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4,
facecolor='lightblue', edgecolor='black')
ax_struct.add_patch(rect)
if i < num_residues - 1:
segment = segments[i] if i < len(segments) else None
if segment:
bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide'
is_n_methylated = 'N-Me' in segment.get('bond_after', '')
bond_color = 'red' if bond_type == 'ester' else 'black'
linestyle = '--' if bond_type == 'ester' else '-'
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos],
color=bond_color, linestyle=linestyle, linewidth=2)
mid_x = x_pos + spacing/2
bond_label = f"{bond_type}"
if is_n_methylated:
bond_label += "\n(N-Me)"
ax_struct.text(mid_x, y_pos+0.1, bond_label,
ha='center', va='bottom', fontsize=10,
color=bond_color)
ax_struct.text(x_pos, y_pos-0.5, residues[i],
ha='center', va='top', fontsize=14)
ax_detail.set_ylim(0, len(segments)+1)
ax_detail.set_xlim(0, 1)
segment_y = len(segments)
for i, segment in enumerate(segments):
y = segment_y - i
# Check if this is a bond or residue
residue, mods = analyzer.identify_residue(segment)
if residue:
text = f"Residue {i+1}: {residue}"
if mods:
text += f" ({', '.join(mods)})"
color = 'blue'
else:
# Must be a bond
text = f"Bond {i}: "
if 'O-linked' in segment.get('bond_after', ''):
text += "ester"
elif 'N-Me' in segment.get('bond_after', ''):
text += "peptide (N-methylated)"
else:
text += "peptide"
color = 'red'
ax_detail.text(0.05, y, text, fontsize=12, color=color)
ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray')
# If cyclic, add connection indicator
if sequence.startswith('cyclo('):
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos),
arrowprops=dict(arrowstyle='<->', color='red', lw=2))
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection',
ha='center', color='red', fontsize=14)
ax_struct.set_title("Peptide Structure Overview", pad=20)
ax_detail.set_title("Segment Analysis Breakdown", pad=20)
for ax in [ax_struct, ax_detail]:
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
plt.tight_layout()
return fig
class PeptideStructureGenerator:
"""Generate 3D structures of peptides using different embedding methods"""
@staticmethod
def prepare_molecule(smiles):
"""Prepare molecule with proper hydrogen handling"""
mol = Chem.MolFromSmiles(smiles, sanitize=False)
if mol is None:
raise ValueError("Failed to create molecule from SMILES")
for atom in mol.GetAtoms():
atom.UpdatePropertyCache(strict=False)
# Sanitize with reduced requirements
Chem.SanitizeMol(mol,
sanitizeOps=Chem.SANITIZE_FINDRADICALS|
Chem.SANITIZE_KEKULIZE|
Chem.SANITIZE_SETAROMATICITY|
Chem.SANITIZE_SETCONJUGATION|
Chem.SANITIZE_SETHYBRIDIZATION|
Chem.SANITIZE_CLEANUPCHIRALITY)
mol = Chem.AddHs(mol)
return mol
@staticmethod
def get_etkdg_params(attempt=0):
"""Get ETKDG parameters"""
params = AllChem.ETKDGv3()
params.randomSeed = -1
params.maxIterations = 200
params.numThreads = 4 # Reduced for web interface
params.useBasicKnowledge = True
params.enforceChirality = True
params.useExpTorsionAnglePrefs = True
params.useSmallRingTorsions = True
params.useMacrocycleTorsions = True
params.ETversion = 2
params.pruneRmsThresh = -1
params.embedRmsThresh = 0.5
if attempt > 10:
params.bondLength = 1.5 + (attempt - 10) * 0.02
params.useExpTorsionAnglePrefs = False
return params
def generate_structure_etkdg(self, smiles, max_attempts=20):
"""Generate 3D structure using ETKDG without UFF optimization"""
success = False
mol = None
for attempt in range(max_attempts):
try:
mol = self.prepare_molecule(smiles)
params = self.get_etkdg_params(attempt)
if AllChem.EmbedMolecule(mol, params) == 0:
success = True
break
except Exception as e:
continue
if not success:
raise ValueError("Failed to generate structure with ETKDG")
return mol
def generate_structure_uff(self, smiles, max_attempts=20):
"""Generate 3D structure using ETKDG followed by UFF optimization"""
best_mol = None
lowest_energy = float('inf')
for attempt in range(max_attempts):
try:
test_mol = self.prepare_molecule(smiles)
params = self.get_etkdg_params(attempt)
if AllChem.EmbedMolecule(test_mol, params) == 0:
res = AllChem.UFFOptimizeMolecule(test_mol, maxIters=2000,
vdwThresh=10.0, confId=0,
ignoreInterfragInteractions=True)
if res == 0:
ff = AllChem.UFFGetMoleculeForceField(test_mol)
if ff:
current_energy = ff.CalcEnergy()
if current_energy < lowest_energy:
lowest_energy = current_energy
best_mol = Chem.Mol(test_mol)
except Exception:
continue
if best_mol is None:
raise ValueError("Failed to generate optimized structure")
return best_mol
@staticmethod
def mol_to_sdf_bytes(mol):
"""Convert RDKit molecule to SDF file bytes"""
sio = StringIO()
writer = Chem.SDWriter(sio)
writer.write(mol)
writer.close()
return sio.getvalue().encode('utf-8')
def process_input(
smiles_input=None,
file_obj=None,
show_linear=False,
show_segment_details=False,
generate_3d=False,
use_uff=False
):
"""Process input and create visualizations using PeptideAnalyzer"""
analyzer = PeptideAnalyzer()
temp_dir = tempfile.mkdtemp() if generate_3d else None
structure_files = []
# Handle direct SMILES input
if smiles_input:
smiles = smiles_input.strip()
if not analyzer.is_peptide(smiles):
return "Error: Input SMILES does not appear to be a peptide structure.", None, None, []
try:
# Preprocess to protect complex residues
pre_smiles, protected_residues = analyzer.preprocess_complex_residues(smiles)
# Report protected residues in summary if any
protected_info = None
if protected_residues:
protected_info = [res['type'] for res in protected_residues]
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return "Error: Invalid SMILES notation.", None, None, []
if generate_3d:
generator = PeptideStructureGenerator()
try:
# Generate ETKDG structure
mol_etkdg = generator.generate_structure_etkdg(smiles)
etkdg_path = os.path.join(temp_dir, "structure_etkdg.sdf")
writer = Chem.SDWriter(etkdg_path)
writer.write(mol_etkdg)
writer.close()
structure_files.append(etkdg_path)
# Generate UFF structure if requested
if use_uff:
mol_uff = generator.generate_structure_uff(smiles)
uff_path = os.path.join(temp_dir, "structure_uff.sdf")
writer = Chem.SDWriter(uff_path)
writer.write(mol_uff)
writer.close()
structure_files.append(uff_path)
except Exception as e:
return f"Error generating 3D structures: {str(e)}", None, None, []
analysis = analyzer.analyze_structure(smiles)
three_letter = analysis['three_letter']
one_letter = analysis['one_letter']
is_cyclic = analysis['is_cyclic']
# Only include segment analysis in output if requested
if show_segment_details:
segments = analyzer.split_on_bonds(smiles)
sequence_parts = []
output_text = ""
output_text += "Segment Analysis:\n"
for i, segment in enumerate(segments):
output_text += f"\nSegment {i}:\n"
output_text += f"Content: {segment['content']}\n"
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n"
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n"
residue, mods = analyzer.identify_residue(segment)
if residue:
if mods:
sequence_parts.append(f"{residue}({','.join(mods)})")
else:
sequence_parts.append(residue)
output_text += f"Identified as: {residue}\n"
output_text += f"Modifications: {mods}\n"
else:
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n"
output_text += "\n"
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
three_letter = '-'.join(sequence_parts)
one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts)
else:
pass
img_cyclic = annotate_cyclic_structure(mol, three_letter)
# Create linear representation if requested
img_linear = None
if show_linear:
fig_linear = create_enhanced_linear_viz(three_letter, smiles)
buf = BytesIO()
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300)
buf.seek(0)
img_linear = Image.open(buf)
plt.close(fig_linear)
summary = "Summary:\n"
summary += f"Sequence: {three_letter}\n"
summary += f"One-letter code: {one_letter}\n"
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
#if is_cyclic:
#summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
if structure_files:
summary += "\n3D Structures Generated:\n"
for filepath in structure_files:
summary += f"- {os.path.basename(filepath)}\n"
#return summary, img_cyclic, img_linear, structure_files if structure_files else None
return summary, img_cyclic
except Exception as e:
#return f"Error processing SMILES: {str(e)}", None, None, []
return f"Error processing SMILES: {str(e)}", None
# Handle file input
if file_obj is not None:
try:
if hasattr(file_obj, 'name'):
with open(file_obj.name, 'r') as f:
content = f.read()
else:
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj)
output_text = ""
for line in content.splitlines():
smiles = line.strip()
if not smiles:
continue
if not analyzer.is_peptide(smiles):
output_text += f"Skipping non-peptide SMILES: {smiles}\n"
continue
try:
# Process the structure
result = analyzer.analyze_structure(smiles)
output_text += f"\nSummary for SMILES: {smiles}\n"
output_text += f"Sequence: {result['three_letter']}\n"
output_text += f"One-letter code: {result['one_letter']}\n"
output_text += f"Is Cyclic: {'Yes' if result['is_cyclic'] else 'No'}\n"
output_text += "-" * 50 + "\n"
except Exception as e:
output_text += f"Error processing SMILES: {smiles} - {str(e)}\n"
output_text += "-" * 50 + "\n"
return output_text, None, None, []
except Exception as e:
return f"Error processing file: {str(e)}", None, None, []
return (
output_text or "No analysis done.",
img_cyclic if 'img_cyclic' in locals() else None,
#img_linear if 'img_linear' in locals() else None,
#structure_files if structure_files else []
)
"""
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(
label="Enter SMILES string",
placeholder="Enter SMILES notation of peptide...",
lines=2
),],
#gr.File(
#label="Or upload a text file with SMILES",
#file_types=[".txt"]
#)],
outputs=[
gr.Textbox(
label="Analysis Results",
lines=10
),
gr.Image(
label="2D Structure with Annotations",
type="pil"
),
],
title="Peptide Structure Analyzer and Visualizer",
description='''
Analyze and visualize peptide structures from SMILES notation:
1. Validates if the input is a peptide structure
2. Determines if the peptide is cyclic
3. Parses the amino acid sequence
4. Creates 2D structure visualization with residue annotations
5. Optional linear representation
6. Optional 3D structure generation (ETKDG and UFF methods)
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
Example SMILES strings (copy and paste):
```
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O
```
```
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O
```
```
CC(C)C[C@H]1C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)NCC(=O)N[C@H](C(=O)N2CCCCC2)CC(=O)N(C)CC(=O)N[C@@H]([C@@H](C)O)C(=O)N(C)[C@@H](C)C(=O)N[C@@H](COC(C)(C)C)C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)N1C
```
''',
flagging_mode="never"
)
if __name__ == "__main__":
iface.launch(share=True)
"""
from fastapi import FastAPI
import gradio as gr
# 1) Make a FastAPI with no OpenAPI/docs routes
app = FastAPI(docs_url=None, redoc_url=None, openapi_url=None)
# 2) Build your Interface as before
iface = gr.Interface(
fn=process_input,
inputs=[ gr.Textbox(label="Enter SMILES string", lines=2) ],
outputs=[
gr.Textbox(label="Analysis Results", lines=10),
gr.Image(label="2D Structure with Annotations", type="pil"),
],
title="Peptide Structure Analyzer and Visualizer",
flagging_mode="never"
)
# 3) Mount it at “/”
app = gr.mount_gradio_app(app, iface, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)