File size: 14,525 Bytes
5203be9
fd8097f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5203be9
fd8097f
 
5203be9
fd8097f
 
 
5203be9
fd8097f
18ba589
fd8097f
18ba589
 
5203be9
 
f99044c
 
 
18ba589
fd8097f
 
5203be9
fd8097f
5203be9
 
 
fd8097f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99044c
fd8097f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5203be9
 
fd8097f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99044c
fd8097f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from fastapi import FastAPI, File, UploadFile, HTTPException
import pytesseract
import cv2
import os
from PIL import Image
import json
import unicodedata
from pdf2image import convert_from_bytes
from pypdf import PdfReader
import numpy as np
from typing import List
import io
import logging
import time
import asyncio
import psutil
import cachetools
import hashlib
from vllm import LLM

app = FastAPI()

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Set Tesseract path
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"

# Initialize BitNet model for CPU-only
try:
    llm = LLM(
        model="username/bitnet-finetuned-invoice",  # Replace with your fine-tuned BitNet model
        device="cpu",
        enforce_eager=True,  # Disable CUDA graph compilation
        tensor_parallel_size=1,  # Single CPU process
        disable_custom_all_reduce=True,  # Avoid GPU optimizations
        max_model_len=2048,  # Fit within 16GB RAM
    )
except Exception as e:
    logger.error(f"Failed to load BitNet model: {str(e)}")
    raise HTTPException(status_code=500, detail="BitNet model initialization failed")

# In-memory caches (1-hour TTL)
raw_text_cache = cachetools.TTLCache(maxsize=100, ttl=3600)
structured_data_cache = cachetools.TTLCache(maxsize=100, ttl=3600)

def log_memory_usage():
    """Log current memory usage."""
    process = psutil.Process()
    mem_info = process.memory_info()
    return f"Memory usage: {mem_info.rss / 1024 / 1024:.2f} MB"

def get_file_hash(file_bytes):
    """Generate MD5 hash of file content."""
    return hashlib.md5(file_bytes).hexdigest()

def get_text_hash(raw_text):
    """Generate MD5 hash of raw text."""
    return hashlib.md5(raw_text.encode('utf-8')).hexdigest()

async def process_image(img_bytes, filename, idx):
    """Process a single image (JPG/JPEG/PNG) with OCR."""
    start_time = time.time()
    logger.info(f"Starting OCR for {filename} image {idx}, {log_memory_usage()}")
    try:
        img = Image.open(io.BytesIO(img_bytes))
        img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        img_pil = Image.fromarray(cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB))
        custom_config = r'--oem 1 --psm 6 -l eng+ara'
        page_text = pytesseract.image_to_string(img_pil, config=custom_config)
        logger.info(f"Completed OCR for {filename} image {idx}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
        return page_text + "\n"
    except Exception as e:
        logger.error(f"OCR failed for {filename} image {idx}: {str(e)}, {log_memory_usage()}")
        return ""

async def process_pdf_page(img, page_idx):
    """Process a single PDF page with OCR."""
    start_time = time.time()
    logger.info(f"Starting OCR for PDF page {page_idx}, {log_memory_usage()}")
    try:
        img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        img_pil = Image.fromarray(cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB))
        custom_config = r'--oem 1 --psm 6 -l eng+ara'
        page_text = pytesseract.image_to_string(img_pil, config=custom_config)
        logger.info(f"Completed OCR for PDF page {page_idx}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
        return page_text + "\n"
    except Exception as e:
        logger.error(f"OCR failed for PDF page {page_idx}: {str(e)}, {log_memory_usage()}")
        return ""

async def process_with_bitnet(filename: str, raw_text: str):
    """Process raw text with BitNet to extract structured data."""
    start_time = time.time()
    logger.info(f"Starting BitNet processing for {filename}, {log_memory_usage()}")

    # Check structured data cache
    text_hash = get_text_hash(raw_text)
    if text_hash in structured_data_cache:
        logger.info(f"Structured data cache hit for {filename}, {log_memory_usage()}")
        return structured_data_cache[text_hash]

    # Truncate text for BitNet
    if len(raw_text) > 10000:
        raw_text = raw_text[:10000]
        logger.info(f"Truncated raw text for {filename} to 10000 characters, {log_memory_usage()}")

    try:
        prompt = f"""You are an intelligent invoice data extractor. Given raw text from an invoice (in English or other languages), 
extract key business fields into the specified JSON format. Return each field with an estimated accuracy score between 0 and 1.

- Accuracy reflects confidence in the correctness of each field.
- Handle synonyms (e.g., 'total' = 'net', 'tax' = 'GST'/'TDS').
- Detect currency from symbols ($, ₹, €) or keywords (USD, INR, EUR); default to USD if unclear.
- The 'items' list may have multiple entries, each with detailed attributes.
- If a field is missing, return an empty value (`""` or `0`) and set `accuracy` to `0.0`.
- Convert any date to YYYY-MM-DD.

Raw text:
{raw_text}

Output JSON:
{{
  "invoice": {{
    "invoice_number": {{"value": "", "accuracy": 0.0}},
    "invoice_date": {{"value": "", "accuracy": 0.0}},
    "due_date": {{"value": "", "accuracy": 0.0}},
    "purchase_order_number": {{"value": "", "accuracy": 0.0}},
    "vendor": {{
      "vendor_id": {{"value": "", "accuracy": 0.0}},
      "name": {{"value": "", "accuracy": 0.0}},
      "address": {{
        "line1": {{"value": "", "accuracy": 0.0}},
        "line2": {{"value": "", "accuracy": 0.0}},
        "city": {{"value": "", "accuracy": 0.0}},
        "state": {{"value": "", "accuracy": 0.0}},
        "postal_code": {{"value": "", "accuracy": 0.0}},
        "country": {{"value": "", "accuracy": 0.0}}
      }},
      "contact": {{
        "email": {{"value": "", "accuracy": 0.0}},
        "phone": {{"value": "", "accuracy": 0.0}}
      }},
      "tax_id": {{"value": "", "accuracy": 0.0}}
    }},
    "buyer": {{
      "buyer_id": {{"value": "", "accuracy": 0.0}},
      "name": {{"value": "", "accuracy": 0.0}},
      "address": {{
        "line1": {{"value": "", "accuracy": 0.0}},
        "line2": {{"value": "", "accuracy": 0.0}},
        "city": {{"value": "", "accuracy": 0.0}},
        "state": {{"value": "", "accuracy": 0.0}},
        "postal_code": {{"value": "", "accuracy": 0.0}},
        "country": {{"value": "", "accuracy": 0.0}}
      }},
      "contact": {{
        "email": {{"value": "", "accuracy": 0.0}},
        "phone": {{"value": "", "accuracy": 0.0}}
      }},
      "tax_id": {{"value": "", "accuracy": 0.0}}
    }},
    "items": [
      {{
        "item_id": {{"value": "", "accuracy": 0.0}},
        "description": {{"value": "", "accuracy": 0.0}},
        "quantity": {{"value": 0, "accuracy": 0.0}},
        "unit_of_measure": {{"value": "", "accuracy": 0.0}},
        "unit_price": {{"value": 0, "accuracy": 0.0}},
        "total_price": {{"value": 0, "accuracy": 0.0}},
        "tax_rate": {{"value": 0, "accuracy": 0.0}},
        "tax_amount": {{"value": 0, "accuracy": 0.0}},
        "discount": {{"value": 0, "accuracy": 0.0}},
        "net_amount": {{"value": 0, "accuracy": 0.0}}
      }}
    ],
    "sub_total": {{"value": 0, "accuracy": 0.0}},
    "tax_total": {{"value": 0, "accuracy": 0.0}},
    "discount_total": {{"value": 0, "accuracy": 0.0}},
    "total_amount": {{"value": 0, "accuracy": 0.0}},
    "currency": {{"value": "", "accuracy": 0.0}}
  }}
}}
"""
        outputs = llm.generate(prompts=[prompt])
        json_str = outputs[0].outputs[0].text
        json_start = json_str.find("{")
        json_end = json_str.rfind("}") + 1
        structured_data = json.loads(json_str[json_start:json_end])
        structured_data_cache[text_hash] = structured_data
        logger.info(f"BitNet processing for {filename}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
        return structured_data
    except Exception as e:
        logger.error(f"BitNet processing failed for {filename}: {str(e)}, {log_memory_usage()}")
        return {"error": f"BitNet processing failed: {str(e)}"}

@app.post("/ocr")
async def extract_and_structure(files: List[UploadFile] = File(...)):
    output_json = {
        "success": True,
        "message": "",
        "data": []
    }
    success_count = 0
    fail_count = 0

    logger.info(f"Starting processing for {len(files)} files, {log_memory_usage()}")

    for file in files:
        total_start_time = time.time()
        logger.info(f"Processing file: {file.filename}, {log_memory_usage()}")

        # Validate file format
        valid_extensions = {'.pdf', '.jpg', '.jpeg', '.png'}
        file_ext = os.path.splitext(file.filename.lower())[1]
        if file_ext not in valid_extensions:
            fail_count += 1
            output_json["data"].append({
                "filename": file.filename,
                "structured_data": {"error": f"Unsupported file format: {file_ext}"},
                "error": f"Unsupported file format: {file_ext}"
            })
            logger.error(f"Unsupported file format for {file.filename}: {file_ext}")
            continue

        # Read file into memory
        try:
            file_start_time = time.time()
            file_bytes = await file.read()
            file_stream = io.BytesIO(file_bytes)
            file_hash = get_file_hash(file_bytes)
            logger.info(f"Read file {file.filename}, took {time.time() - file_start_time:.2f} seconds, size: {len(file_bytes)/1024:.2f} KB, {log_memory_usage()}")
        except Exception as e:
            fail_count += 1
            output_json["data"].append({
                "filename": file.filename,
                "structured_data": {"error": f"Failed to read file: {str(e)}"},
                "error": f"Failed to read file: {str(e)}"
            })
            logger.error(f"Failed to read file {file.filename}: {str(e)}, {log_memory_usage()}")
            continue

        # Check raw text cache
        raw_text = ""
        if file_hash in raw_text_cache:
            raw_text = raw_text_cache[file_hash]
            logger.info(f"Raw text cache hit for {file.filename}, {log_memory_usage()}")
        else:
            if file_ext == '.pdf':
                # Try extracting embedded text
                try:
                    extract_start_time = time.time()
                    reader = PdfReader(file_stream)
                    for page in reader.pages:
                        text = page.extract_text()
                        if text:
                            raw_text += text + "\n"
                    logger.info(f"Embedded text extraction for {file.filename}, took {time.time() - extract_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
                except Exception as e:
                    logger.warning(f"Embedded text extraction failed for {file.filename}: {str(e)}, {log_memory_usage()}")

                # If no embedded text, perform OCR
                if not raw_text.strip():
                    try:
                        convert_start_time = time.time()
                        images = convert_from_bytes(file_bytes, dpi=100)
                        logger.info(f"PDF to images conversion for {file.filename}, {len(images)} pages, took {time.time() - convert_start_time:.2f} seconds, {log_memory_usage()}")

                        ocr_start_time = time.time()
                        page_texts = []
                        for i, img in enumerate(images):
                            page_text = await process_pdf_page(img, i)
                            page_texts.append(page_text)
                        raw_text = "".join(page_texts)
                        logger.info(f"Total OCR for {file.filename}, took {time.time() - ocr_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
                    except Exception as e:
                        fail_count += 1
                        output_json["data"].append({
                            "filename": file.filename,
                            "structured_data": {"error": f"OCR failed: {str(e)}"},
                            "error": f"OCR failed: {str(e)}"
                        })
                        logger.error(f"OCR failed for {file.filename}: {str(e)}, {log_memory_usage()}")
                        continue
            else:  # JPG/JPEG/PNG
                try:
                    ocr_start_time = time.time()
                    raw_text = await process_image(file_bytes, file.filename, 0)
                    logger.info(f"Image OCR for {file.filename}, took {time.time() - ocr_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
                except Exception as e:
                    fail_count += 1
                    output_json["data"].append({
                        "filename": file.filename,
                        "structured_data": {"error": f"Image OCR failed: {str(e)}"},
                        "error": f"Image OCR failed: {str(e)}"
                    })
                    logger.error(f"Image OCR failed for {file.filename}: {str(e)}, {log_memory_usage()}")
                    continue

            # Normalize text
            try:
                normalize_start_time = time.time()
                raw_text = unicodedata.normalize('NFKC', raw_text)
                raw_text = raw_text.encode().decode('utf-8')
                raw_text_cache[file_hash] = raw_text
                logger.info(f"Text normalization for {file.filename}, took {time.time() - normalize_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
            except Exception as e:
                logger.warning(f"Text normalization failed for {file.filename}: {str(e)}, {log_memory_usage()}")

        # Process with BitNet
        structured_data = await process_with_bitnet(file.filename, raw_text)
        success_count += 1
        output_json["data"].append({
            "filename": file.filename,
            "structured_data": structured_data,
            "error": ""
        })

        logger.info(f"Total processing for {file.filename}, took {time.time() - total_start_time:.2f} seconds, {log_memory_usage()}")

    output_json["message"] = f"Processed {len(files)} files. {success_count} succeeded, {fail_count} failed."
    if fail_count > 0 and success_count == 0:
        output_json["success"] = False

    logger.info(f"Completed processing for {len(files)} files, {success_count} succeeded, {fail_count} failed, {log_memory_usage()}")
    return output_json