File size: 14,525 Bytes
5203be9 fd8097f 5203be9 fd8097f 5203be9 fd8097f 5203be9 fd8097f 18ba589 fd8097f 18ba589 5203be9 f99044c 18ba589 fd8097f 5203be9 fd8097f 5203be9 fd8097f f99044c fd8097f 5203be9 fd8097f f99044c fd8097f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
from fastapi import FastAPI, File, UploadFile, HTTPException
import pytesseract
import cv2
import os
from PIL import Image
import json
import unicodedata
from pdf2image import convert_from_bytes
from pypdf import PdfReader
import numpy as np
from typing import List
import io
import logging
import time
import asyncio
import psutil
import cachetools
import hashlib
from vllm import LLM
app = FastAPI()
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Set Tesseract path
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
# Initialize BitNet model for CPU-only
try:
llm = LLM(
model="username/bitnet-finetuned-invoice", # Replace with your fine-tuned BitNet model
device="cpu",
enforce_eager=True, # Disable CUDA graph compilation
tensor_parallel_size=1, # Single CPU process
disable_custom_all_reduce=True, # Avoid GPU optimizations
max_model_len=2048, # Fit within 16GB RAM
)
except Exception as e:
logger.error(f"Failed to load BitNet model: {str(e)}")
raise HTTPException(status_code=500, detail="BitNet model initialization failed")
# In-memory caches (1-hour TTL)
raw_text_cache = cachetools.TTLCache(maxsize=100, ttl=3600)
structured_data_cache = cachetools.TTLCache(maxsize=100, ttl=3600)
def log_memory_usage():
"""Log current memory usage."""
process = psutil.Process()
mem_info = process.memory_info()
return f"Memory usage: {mem_info.rss / 1024 / 1024:.2f} MB"
def get_file_hash(file_bytes):
"""Generate MD5 hash of file content."""
return hashlib.md5(file_bytes).hexdigest()
def get_text_hash(raw_text):
"""Generate MD5 hash of raw text."""
return hashlib.md5(raw_text.encode('utf-8')).hexdigest()
async def process_image(img_bytes, filename, idx):
"""Process a single image (JPG/JPEG/PNG) with OCR."""
start_time = time.time()
logger.info(f"Starting OCR for {filename} image {idx}, {log_memory_usage()}")
try:
img = Image.open(io.BytesIO(img_bytes))
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
img_pil = Image.fromarray(cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB))
custom_config = r'--oem 1 --psm 6 -l eng+ara'
page_text = pytesseract.image_to_string(img_pil, config=custom_config)
logger.info(f"Completed OCR for {filename} image {idx}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
return page_text + "\n"
except Exception as e:
logger.error(f"OCR failed for {filename} image {idx}: {str(e)}, {log_memory_usage()}")
return ""
async def process_pdf_page(img, page_idx):
"""Process a single PDF page with OCR."""
start_time = time.time()
logger.info(f"Starting OCR for PDF page {page_idx}, {log_memory_usage()}")
try:
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
img_pil = Image.fromarray(cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB))
custom_config = r'--oem 1 --psm 6 -l eng+ara'
page_text = pytesseract.image_to_string(img_pil, config=custom_config)
logger.info(f"Completed OCR for PDF page {page_idx}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
return page_text + "\n"
except Exception as e:
logger.error(f"OCR failed for PDF page {page_idx}: {str(e)}, {log_memory_usage()}")
return ""
async def process_with_bitnet(filename: str, raw_text: str):
"""Process raw text with BitNet to extract structured data."""
start_time = time.time()
logger.info(f"Starting BitNet processing for {filename}, {log_memory_usage()}")
# Check structured data cache
text_hash = get_text_hash(raw_text)
if text_hash in structured_data_cache:
logger.info(f"Structured data cache hit for {filename}, {log_memory_usage()}")
return structured_data_cache[text_hash]
# Truncate text for BitNet
if len(raw_text) > 10000:
raw_text = raw_text[:10000]
logger.info(f"Truncated raw text for {filename} to 10000 characters, {log_memory_usage()}")
try:
prompt = f"""You are an intelligent invoice data extractor. Given raw text from an invoice (in English or other languages),
extract key business fields into the specified JSON format. Return each field with an estimated accuracy score between 0 and 1.
- Accuracy reflects confidence in the correctness of each field.
- Handle synonyms (e.g., 'total' = 'net', 'tax' = 'GST'/'TDS').
- Detect currency from symbols ($, ₹, €) or keywords (USD, INR, EUR); default to USD if unclear.
- The 'items' list may have multiple entries, each with detailed attributes.
- If a field is missing, return an empty value (`""` or `0`) and set `accuracy` to `0.0`.
- Convert any date to YYYY-MM-DD.
Raw text:
{raw_text}
Output JSON:
{{
"invoice": {{
"invoice_number": {{"value": "", "accuracy": 0.0}},
"invoice_date": {{"value": "", "accuracy": 0.0}},
"due_date": {{"value": "", "accuracy": 0.0}},
"purchase_order_number": {{"value": "", "accuracy": 0.0}},
"vendor": {{
"vendor_id": {{"value": "", "accuracy": 0.0}},
"name": {{"value": "", "accuracy": 0.0}},
"address": {{
"line1": {{"value": "", "accuracy": 0.0}},
"line2": {{"value": "", "accuracy": 0.0}},
"city": {{"value": "", "accuracy": 0.0}},
"state": {{"value": "", "accuracy": 0.0}},
"postal_code": {{"value": "", "accuracy": 0.0}},
"country": {{"value": "", "accuracy": 0.0}}
}},
"contact": {{
"email": {{"value": "", "accuracy": 0.0}},
"phone": {{"value": "", "accuracy": 0.0}}
}},
"tax_id": {{"value": "", "accuracy": 0.0}}
}},
"buyer": {{
"buyer_id": {{"value": "", "accuracy": 0.0}},
"name": {{"value": "", "accuracy": 0.0}},
"address": {{
"line1": {{"value": "", "accuracy": 0.0}},
"line2": {{"value": "", "accuracy": 0.0}},
"city": {{"value": "", "accuracy": 0.0}},
"state": {{"value": "", "accuracy": 0.0}},
"postal_code": {{"value": "", "accuracy": 0.0}},
"country": {{"value": "", "accuracy": 0.0}}
}},
"contact": {{
"email": {{"value": "", "accuracy": 0.0}},
"phone": {{"value": "", "accuracy": 0.0}}
}},
"tax_id": {{"value": "", "accuracy": 0.0}}
}},
"items": [
{{
"item_id": {{"value": "", "accuracy": 0.0}},
"description": {{"value": "", "accuracy": 0.0}},
"quantity": {{"value": 0, "accuracy": 0.0}},
"unit_of_measure": {{"value": "", "accuracy": 0.0}},
"unit_price": {{"value": 0, "accuracy": 0.0}},
"total_price": {{"value": 0, "accuracy": 0.0}},
"tax_rate": {{"value": 0, "accuracy": 0.0}},
"tax_amount": {{"value": 0, "accuracy": 0.0}},
"discount": {{"value": 0, "accuracy": 0.0}},
"net_amount": {{"value": 0, "accuracy": 0.0}}
}}
],
"sub_total": {{"value": 0, "accuracy": 0.0}},
"tax_total": {{"value": 0, "accuracy": 0.0}},
"discount_total": {{"value": 0, "accuracy": 0.0}},
"total_amount": {{"value": 0, "accuracy": 0.0}},
"currency": {{"value": "", "accuracy": 0.0}}
}}
}}
"""
outputs = llm.generate(prompts=[prompt])
json_str = outputs[0].outputs[0].text
json_start = json_str.find("{")
json_end = json_str.rfind("}") + 1
structured_data = json.loads(json_str[json_start:json_end])
structured_data_cache[text_hash] = structured_data
logger.info(f"BitNet processing for {filename}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
return structured_data
except Exception as e:
logger.error(f"BitNet processing failed for {filename}: {str(e)}, {log_memory_usage()}")
return {"error": f"BitNet processing failed: {str(e)}"}
@app.post("/ocr")
async def extract_and_structure(files: List[UploadFile] = File(...)):
output_json = {
"success": True,
"message": "",
"data": []
}
success_count = 0
fail_count = 0
logger.info(f"Starting processing for {len(files)} files, {log_memory_usage()}")
for file in files:
total_start_time = time.time()
logger.info(f"Processing file: {file.filename}, {log_memory_usage()}")
# Validate file format
valid_extensions = {'.pdf', '.jpg', '.jpeg', '.png'}
file_ext = os.path.splitext(file.filename.lower())[1]
if file_ext not in valid_extensions:
fail_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": {"error": f"Unsupported file format: {file_ext}"},
"error": f"Unsupported file format: {file_ext}"
})
logger.error(f"Unsupported file format for {file.filename}: {file_ext}")
continue
# Read file into memory
try:
file_start_time = time.time()
file_bytes = await file.read()
file_stream = io.BytesIO(file_bytes)
file_hash = get_file_hash(file_bytes)
logger.info(f"Read file {file.filename}, took {time.time() - file_start_time:.2f} seconds, size: {len(file_bytes)/1024:.2f} KB, {log_memory_usage()}")
except Exception as e:
fail_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": {"error": f"Failed to read file: {str(e)}"},
"error": f"Failed to read file: {str(e)}"
})
logger.error(f"Failed to read file {file.filename}: {str(e)}, {log_memory_usage()}")
continue
# Check raw text cache
raw_text = ""
if file_hash in raw_text_cache:
raw_text = raw_text_cache[file_hash]
logger.info(f"Raw text cache hit for {file.filename}, {log_memory_usage()}")
else:
if file_ext == '.pdf':
# Try extracting embedded text
try:
extract_start_time = time.time()
reader = PdfReader(file_stream)
for page in reader.pages:
text = page.extract_text()
if text:
raw_text += text + "\n"
logger.info(f"Embedded text extraction for {file.filename}, took {time.time() - extract_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
except Exception as e:
logger.warning(f"Embedded text extraction failed for {file.filename}: {str(e)}, {log_memory_usage()}")
# If no embedded text, perform OCR
if not raw_text.strip():
try:
convert_start_time = time.time()
images = convert_from_bytes(file_bytes, dpi=100)
logger.info(f"PDF to images conversion for {file.filename}, {len(images)} pages, took {time.time() - convert_start_time:.2f} seconds, {log_memory_usage()}")
ocr_start_time = time.time()
page_texts = []
for i, img in enumerate(images):
page_text = await process_pdf_page(img, i)
page_texts.append(page_text)
raw_text = "".join(page_texts)
logger.info(f"Total OCR for {file.filename}, took {time.time() - ocr_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
except Exception as e:
fail_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": {"error": f"OCR failed: {str(e)}"},
"error": f"OCR failed: {str(e)}"
})
logger.error(f"OCR failed for {file.filename}: {str(e)}, {log_memory_usage()}")
continue
else: # JPG/JPEG/PNG
try:
ocr_start_time = time.time()
raw_text = await process_image(file_bytes, file.filename, 0)
logger.info(f"Image OCR for {file.filename}, took {time.time() - ocr_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
except Exception as e:
fail_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": {"error": f"Image OCR failed: {str(e)}"},
"error": f"Image OCR failed: {str(e)}"
})
logger.error(f"Image OCR failed for {file.filename}: {str(e)}, {log_memory_usage()}")
continue
# Normalize text
try:
normalize_start_time = time.time()
raw_text = unicodedata.normalize('NFKC', raw_text)
raw_text = raw_text.encode().decode('utf-8')
raw_text_cache[file_hash] = raw_text
logger.info(f"Text normalization for {file.filename}, took {time.time() - normalize_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
except Exception as e:
logger.warning(f"Text normalization failed for {file.filename}: {str(e)}, {log_memory_usage()}")
# Process with BitNet
structured_data = await process_with_bitnet(file.filename, raw_text)
success_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": structured_data,
"error": ""
})
logger.info(f"Total processing for {file.filename}, took {time.time() - total_start_time:.2f} seconds, {log_memory_usage()}")
output_json["message"] = f"Processed {len(files)} files. {success_count} succeeded, {fail_count} failed."
if fail_count > 0 and success_count == 0:
output_json["success"] = False
logger.info(f"Completed processing for {len(files)} files, {success_count} succeeded, {fail_count} failed, {log_memory_usage()}")
return output_json |