Noo88ear's picture
Update app.py
da3d35e verified
raw
history blame
34.2 kB
"""
Marketing Image Generator with Agent Review - Complete Gradio App
Integrated single-file application that includes:
1. Image Generator Agent (using Google Imagen)
2. Image Reviewer Agent (using Google Gemini Vision)
3. Gradio UI for Hugging Face deployment
This combines the functionality of the entire marketing image generation system
into one deployable file for Hugging Face Spaces.
"""
import gradio as gr
import os
import base64
import io
import time
import re
import logging
import asyncio
from typing import Dict, Any, List, Optional
from PIL import Image
import google.generativeai as genai
from google import genai as genai_sdk
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
MAX_IMAGE_SIZE = 1024
DEFAULT_QUALITY_THRESHOLD = 0.8
# Initialize Google API with multiple authentication methods
def setup_google_auth():
"""Setup Google authentication with multiple fallback options"""
# Method 1: Try service account JSON (for Google Cloud APIs)
gcp_service_account = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
if gcp_service_account:
try:
import json
from google.oauth2 import service_account
import google.auth
# Parse the service account JSON
service_account_info = json.loads(gcp_service_account)
credentials = service_account.Credentials.from_service_account_info(service_account_info)
# Set up for Google Cloud APIs
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'temp_service_account.json'
with open('temp_service_account.json', 'w') as f:
json.dump(service_account_info, f)
logger.info("Google Cloud service account configured successfully")
return "service_account"
except Exception as e:
logger.warning(f"Failed to setup service account: {e}")
# Method 2: Try API keys (for Google AI Studio)
api_keys = [
os.getenv("GOOGLE_API_KEY"),
os.getenv("GOOGLE_AI_STUDIO_API_KEY"),
os.getenv("GCP_KEY_1"),
os.getenv("GCP_KEY_2"),
os.getenv("GCP_KEY_3")
]
google_api_key = next((key for key in api_keys if key), None)
if google_api_key:
try:
genai.configure(api_key=google_api_key)
logger.info("Google AI Studio API key configured successfully")
return google_api_key
except Exception as e:
logger.warning(f"Failed to configure API key: {e}")
logger.warning("No Google authentication found - using fallback mode")
return None
# Setup authentication
GOOGLE_AUTH = setup_google_auth()
# ====== IMAGE GENERATOR AGENT ======
class ImageGeneratorAgent:
"""Agent responsible for generating marketing images using Google Imagen"""
def __init__(self):
self.name = "image_generator_agent"
async def enhance_prompt(self, prompt: str, style: str) -> str:
"""Enhance user prompt for better image generation"""
if not GOOGLE_AUTH:
# Basic enhancement without AI
style_enhancers = {
"realistic": "photorealistic, high detail, professional photography, marketing quality",
"artistic": "artistic masterpiece, creative composition, marketing appeal",
"cartoon": "cartoon style, vibrant colors, playful, marketing friendly",
"illustration": "professional illustration, clean design, marketing material",
"photographic": "professional photograph, high quality, studio lighting, marketing shot"
}
enhancer = style_enhancers.get(style, "high quality, professional")
return f"{prompt}, {enhancer}, 4K resolution, sharp focus"
try:
enhancement_prompt = f"""
You are an expert prompt engineer for AI image generation. Enhance this marketing image prompt for optimal results with Google Imagen.
Original prompt: "{prompt}"
Desired style: "{style}"
Create an enhanced version that:
1. Maintains the core marketing intent
2. Adds specific technical details for image quality
3. Includes appropriate style descriptors for "{style}" style
4. Adds professional marketing composition guidance
5. Keeps the enhanced prompt under 150 words
Return only the enhanced prompt without explanation.
"""
model = genai.GenerativeModel('gemini-2.0-flash-exp')
response = model.generate_content(enhancement_prompt)
enhanced = response.text.strip()
logger.info(f"Enhanced prompt: {enhanced[:100]}...")
return enhanced
except Exception as e:
logger.warning(f"Failed to enhance prompt with AI: {e}")
style_enhancers = {
"realistic": "photorealistic, high detail, professional photography, marketing quality",
"artistic": "artistic masterpiece, creative composition, marketing appeal",
"cartoon": "cartoon style, vibrant colors, playful, marketing friendly",
"illustration": "professional illustration, clean design, marketing material",
"photographic": "professional photograph, high quality, studio lighting"
}
enhancer = style_enhancers.get(style, "high quality, professional")
return f"{prompt}, {enhancer}, 4K resolution, sharp focus"
async def generate_image(self, prompt: str, style: str = "realistic") -> Dict[str, Any]:
"""Generate image using Google Imagen"""
try:
# Enhance the prompt first
enhanced_prompt = await self.enhance_prompt(prompt, style)
# Try Google Imagen API
if GOOGLE_AUTH:
image_data = await self._generate_with_imagen(enhanced_prompt)
if image_data:
return {
"success": True,
"image_data": image_data,
"enhanced_prompt": enhanced_prompt,
"method": "Google Imagen"
}
# Fallback to placeholder for demo
return await self._generate_fallback(enhanced_prompt, style)
except Exception as e:
logger.error(f"Image generation failed: {e}")
return {
"success": False,
"error": str(e),
"enhanced_prompt": prompt
}
async def _generate_with_imagen(self, enhanced_prompt: str) -> Optional[str]:
"""Generate image using Google Imagen API"""
try:
# Handle different authentication methods
if GOOGLE_AUTH == "service_account":
# Use service account authentication
client = genai_sdk.Client() # Will use GOOGLE_APPLICATION_CREDENTIALS
else:
# Use API key authentication
client = genai_sdk.Client(api_key=GOOGLE_AUTH)
result = client.models.generate_images(
model="imagen-3.0-generate-002",
prompt=enhanced_prompt,
config={
"number_of_images": 1,
"output_mime_type": "image/png"
}
)
if result and hasattr(result, 'generated_images') and len(result.generated_images) > 0:
generated_image = result.generated_images[0]
if hasattr(generated_image, 'image') and hasattr(generated_image.image, 'image_bytes'):
image_bytes = generated_image.image.image_bytes
base64_image = base64.b64encode(image_bytes).decode('utf-8')
return f"data:image/png;base64,{base64_image}"
return None
except Exception as e:
logger.warning(f"Imagen API failed: {e}")
return None
async def _generate_fallback(self, enhanced_prompt: str, style: str) -> Dict[str, Any]:
"""Generate fallback placeholder image"""
try:
# Create a simple colored image based on prompt
import hashlib
prompt_hash = int(hashlib.md5(enhanced_prompt.encode()).hexdigest()[:8], 16)
# Generate deterministic but varied colors
colors = [
(70, 130, 180), # Steel Blue
(60, 179, 113), # Medium Sea Green
(255, 140, 0), # Dark Orange
(106, 90, 205), # Slate Blue
(220, 20, 60), # Crimson
(255, 215, 0), # Gold
(147, 112, 219), # Medium Purple
(32, 178, 170) # Light Sea Green
]
color = colors[prompt_hash % len(colors)]
img = Image.new('RGB', (1024, 1024), color)
# Add some simple text overlay
try:
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(img)
# Try to use a font, fallback to default
try:
font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 48)
except:
font = ImageFont.load_default()
# Add text
text = f"Marketing Image\n{style.title()} Style"
draw.multiline_text((50, 450), text, fill=(255, 255, 255), font=font, align="center")
except Exception as e:
logger.warning(f"Could not add text overlay: {e}")
# Convert to base64
img_buffer = io.BytesIO()
img.save(img_buffer, format='PNG')
img_buffer.seek(0)
base64_image = base64.b64encode(img_buffer.read()).decode('utf-8')
return {
"success": True,
"image_data": f"data:image/png;base64,{base64_image}",
"enhanced_prompt": enhanced_prompt,
"method": "Fallback Demo"
}
except Exception as e:
logger.error(f"Fallback generation failed: {e}")
return {"success": False, "error": str(e)}
# ====== IMAGE REVIEWER AGENT ======
class ImageReviewerAgent:
"""Agent responsible for reviewing generated images for quality and relevance"""
def __init__(self):
self.name = "image_reviewer_agent"
def parse_prompt_elements(self, prompt: str) -> Dict[str, List[str]]:
"""Parse prompt to extract key elements for validation"""
prompt_lower = prompt.lower()
# Define patterns for different element types
patterns = {
"subjects": [
r'\b(person|man|woman|child|people|human|figure|team|group)\b',
r'\b(product|device|phone|laptop|car|building|office|space)\b',
r'\b(logo|brand|company|business|service)\b'
],
"style": [
r'\b(realistic|photorealistic|photograph|photo)\b',
r'\b(artistic|painting|drawing|illustration)\b',
r'\b(modern|contemporary|minimalist|professional)\b',
r'\b(cartoon|animated|3d|rendered)\b'
],
"colors": [
r'\b(blue|red|green|yellow|orange|purple|pink|black|white|gray|grey)\b',
r'\b(bright|dark|light|vibrant|muted|pastel|neon)\b',
r'\b(colorful|monochrome|gradient)\b'
],
"settings": [
r'\b(office|studio|outdoor|indoor|background|scene)\b',
r'\b(professional|corporate|casual|formal)\b',
r'\b(lighting|natural light|studio lighting)\b'
],
"marketing": [
r'\b(marketing|advertisement|promotional|campaign|brand)\b',
r'\b(professional|business|corporate|commercial)\b',
r'\b(hero|banner|social media|web|digital)\b'
]
}
def extract_matches(patterns_list: List[str], text: str) -> List[str]:
matches = set()
for pattern in patterns_list:
found = re.findall(pattern, text)
matches.update(found)
return list(matches)
return {
key: extract_matches(pattern_list, prompt_lower)
for key, pattern_list in patterns.items()
}
async def review_image(self, image_data: str, original_prompt: str, enhanced_prompt: str) -> Dict[str, Any]:
"""Review generated image for quality and relevance"""
try:
logger.info("Starting image review analysis")
# Parse prompt elements
prompt_elements = self.parse_prompt_elements(original_prompt)
# Try AI-powered review if API available
if GOOGLE_AUTH and image_data.startswith("data:image"):
ai_review = await self._ai_powered_review(image_data, original_prompt, enhanced_prompt, prompt_elements)
if ai_review:
return ai_review
# Fallback to prompt-based analysis
return await self._prompt_based_review(original_prompt, enhanced_prompt, prompt_elements)
except Exception as e:
logger.error(f"Image review failed: {e}")
return self._fallback_review(original_prompt)
async def _ai_powered_review(self, image_data: str, original_prompt: str, enhanced_prompt: str, prompt_elements: Dict) -> Optional[Dict[str, Any]]:
"""Review image using Google Gemini Vision"""
try:
# Extract image from data URL
if not image_data.startswith("data:image"):
return None
image_b64 = image_data.split(',')[1]
image_bytes = base64.b64decode(image_b64)
image = Image.open(io.BytesIO(image_bytes))
# Create detailed analysis prompt
analysis_prompt = f"""
Analyze this marketing image that was generated from: "{original_prompt}"
Enhanced prompt used: "{enhanced_prompt}"
Key elements to verify:
- Subjects: {', '.join(prompt_elements.get('subjects', []))}
- Style: {', '.join(prompt_elements.get('style', []))}
- Colors: {', '.join(prompt_elements.get('colors', []))}
- Setting: {', '.join(prompt_elements.get('settings', []))}
- Marketing elements: {', '.join(prompt_elements.get('marketing', []))}
Rate the image on:
1. Technical Quality (0.0-1.0): clarity, composition, lighting, resolution
2. Prompt Relevance (0.0-1.0): how well it matches the original request
3. Marketing Effectiveness (0.0-1.0): professional appeal, brand suitability
Provide response in this format:
QUALITY_SCORE: [0.0-1.0]
RELEVANCE_SCORE: [0.0-1.0]
MARKETING_SCORE: [0.0-1.0]
STRENGTHS: [List 2-3 strong points]
ISSUES: [List 2-3 improvement areas]
RECOMMENDATIONS: [List 2-3 specific suggestions]
OVERALL_ASSESSMENT: [Brief summary of the image's marketing potential]
"""
model = genai.GenerativeModel('gemini-2.0-flash-exp')
response = model.generate_content([analysis_prompt, image])
analysis_text = response.text
return self._parse_ai_review(analysis_text, original_prompt)
except Exception as e:
logger.warning(f"AI-powered review failed: {e}")
return None
def _parse_ai_review(self, analysis_text: str, original_prompt: str) -> Dict[str, Any]:
"""Parse AI review response into structured feedback"""
def extract_score(text: str, score_type: str) -> float:
pattern = rf"{score_type}_SCORE:\s*([\d.]+)"
match = re.search(pattern, text, re.IGNORECASE)
if match:
try:
return min(1.0, max(0.0, float(match.group(1))))
except ValueError:
pass
return 0.7
def extract_list_section(text: str, section: str) -> List[str]:
pattern = rf"{section}:\s*(.+?)(?=\n[A-Z_]+:|$)"
match = re.search(pattern, text, re.IGNORECASE | re.DOTALL)
if match:
items_text = match.group(1).strip()
items = [item.strip().strip('-β€’*').strip()
for item in re.split(r'\n|,', items_text)
if item.strip() and len(item.strip()) > 3]
return items[:3] # Limit to 3 items
return []
try:
# Extract scores
quality_score = extract_score(analysis_text, "QUALITY")
relevance_score = extract_score(analysis_text, "RELEVANCE")
marketing_score = extract_score(analysis_text, "MARKETING")
# Extract feedback sections
strengths = extract_list_section(analysis_text, "STRENGTHS")
issues = extract_list_section(analysis_text, "ISSUES")
recommendations = extract_list_section(analysis_text, "RECOMMENDATIONS")
# Extract overall assessment
assessment_match = re.search(r"OVERALL_ASSESSMENT:\s*(.+?)(?=\n[A-Z_]+:|$)",
analysis_text, re.IGNORECASE | re.DOTALL)
overall_assessment = assessment_match.group(1).strip() if assessment_match else "Good marketing image potential"
# Calculate weighted overall score (emphasize marketing effectiveness)
overall_score = (quality_score * 0.3 + relevance_score * 0.4 + marketing_score * 0.3)
# Determine pass/fail
passed = overall_score >= 0.7 and relevance_score >= 0.6
return {
"success": True,
"overall_score": round(overall_score, 2),
"quality_score": round(quality_score, 2),
"relevance_score": round(relevance_score, 2),
"marketing_score": round(marketing_score, 2),
"passed": passed,
"strengths": strengths,
"issues": issues,
"recommendations": recommendations,
"overall_assessment": overall_assessment,
"review_method": "AI-Powered (Gemini Vision)"
}
except Exception as e:
logger.error(f"Error parsing AI review: {e}")
return self._fallback_review(original_prompt)
async def _prompt_based_review(self, original_prompt: str, enhanced_prompt: str, prompt_elements: Dict) -> Dict[str, Any]:
"""Review based on prompt analysis when AI review isn't available"""
issues = []
recommendations = []
strengths = []
# Analyze prompt completeness
total_elements = sum(len(elements) for elements in prompt_elements.values())
# Base scoring
if total_elements >= 8:
base_score = 0.8
strengths.append("Comprehensive prompt with detailed specifications")
elif total_elements >= 5:
base_score = 0.7
strengths.append("Good prompt detail level")
elif total_elements >= 3:
base_score = 0.6
issues.append("Prompt could use more specific details")
else:
base_score = 0.5
issues.append("Prompt lacks sufficient detail for optimal results")
recommendations.append("Add more specific details about subjects, style, and setting")
# Check for marketing-specific elements
marketing_elements = prompt_elements.get('marketing', [])
if marketing_elements:
base_score += 0.1
strengths.append("Contains marketing-focused language")
else:
recommendations.append("Consider adding marketing-specific context")
# Check for style specification
style_elements = prompt_elements.get('style', [])
if style_elements:
strengths.append(f"Clear style direction: {', '.join(style_elements[:2])}")
else:
issues.append("No clear artistic style specified")
recommendations.append("Specify desired artistic style (realistic, artistic, etc.)")
# Check for subject clarity
subject_elements = prompt_elements.get('subjects', [])
if subject_elements:
strengths.append(f"Clear subjects identified: {', '.join(subject_elements[:2])}")
else:
issues.append("Main subjects not clearly specified")
recommendations.append("Clearly define what should be the main focus")
# Calculate scores
quality_score = min(1.0, base_score + 0.1) # Slight boost for quality
relevance_score = base_score # Based on prompt completeness
marketing_score = base_score + (0.1 if marketing_elements else -0.1)
overall_score = (quality_score * 0.3 + relevance_score * 0.4 + marketing_score * 0.3)
passed = overall_score >= 0.6
return {
"success": True,
"overall_score": round(overall_score, 2),
"quality_score": round(quality_score, 2),
"relevance_score": round(relevance_score, 2),
"marketing_score": round(marketing_score, 2),
"passed": passed,
"strengths": strengths[:3],
"issues": issues[:3],
"recommendations": recommendations[:3],
"overall_assessment": f"Prompt-based analysis shows {'good' if passed else 'moderate'} marketing image potential",
"review_method": "Prompt Analysis"
}
def _fallback_review(self, original_prompt: str) -> Dict[str, Any]:
"""Fallback review when all else fails"""
word_count = len(original_prompt.split())
base_score = min(0.8, max(0.4, 0.4 + (word_count * 0.02)))
return {
"success": True,
"overall_score": base_score,
"quality_score": base_score,
"relevance_score": base_score,
"marketing_score": base_score,
"passed": base_score >= 0.6,
"strengths": ["Prompt provided for image generation"],
"issues": ["Unable to perform detailed analysis"],
"recommendations": ["Consider regenerating with more detailed prompt"],
"overall_assessment": "Basic review completed",
"review_method": "Fallback"
}
# ====== MAIN APPLICATION WORKFLOW ======
# Initialize agents
generator_agent = ImageGeneratorAgent()
reviewer_agent = ImageReviewerAgent()
def generate_marketing_image_with_review(
prompt: str,
style: str = "realistic",
quality_threshold: float = 0.8,
max_iterations: int = 2,
progress=gr.Progress(track_tqdm=True)
):
"""
Main workflow: Generate image and review it
"""
if not prompt.strip():
return None, "Please enter a prompt to generate an image.", "❌ No Prompt", ""
try:
progress(0.1, desc="Initializing generation workflow...")
# Step 1: Generate image
progress(0.3, desc="Generating marketing image...")
generation_result = asyncio.run(generator_agent.generate_image(prompt, style))
if not generation_result.get("success"):
error_msg = f"Image generation failed: {generation_result.get('error', 'Unknown error')}"
return None, error_msg, "❌ Generation Failed", ""
image_data = generation_result["image_data"]
enhanced_prompt = generation_result["enhanced_prompt"]
# Convert base64 to PIL Image for display
if image_data.startswith("data:image"):
image_b64 = image_data.split(',')[1]
image_bytes = base64.b64decode(image_b64)
display_image = Image.open(io.BytesIO(image_bytes))
else:
display_image = None
progress(0.6, desc="Reviewing image quality...")
# Step 2: Review the generated image
review_result = asyncio.run(reviewer_agent.review_image(image_data, prompt, enhanced_prompt))
progress(0.9, desc="Finalizing results...")
# Step 3: Format results
if review_result.get("success"):
# Build quality information display
quality_info = f"""
## 🎯 Review Results
**Overall Score:** {review_result['overall_score']:.2f}/1.0
**Status:** {'βœ… Approved' if review_result['passed'] else '⚠️ Needs Improvement'}
### Detailed Scores
- **Quality:** {review_result['quality_score']:.2f}/1.0
- **Relevance:** {review_result['relevance_score']:.2f}/1.0
- **Marketing Appeal:** {review_result['marketing_score']:.2f}/1.0
### πŸ’ͺ Strengths
{chr(10).join(f"β€’ {strength}" for strength in review_result.get('strengths', []))}
### ⚠️ Areas for Improvement
{chr(10).join(f"β€’ {issue}" for issue in review_result.get('issues', []))}
### πŸ’‘ Recommendations
{chr(10).join(f"β€’ {rec}" for rec in review_result.get('recommendations', []))}
### πŸ“ Assessment
{review_result.get('overall_assessment', 'Review completed')}
---
*Review Method: {review_result.get('review_method', 'Standard')}*
*Enhanced Prompt: {enhanced_prompt[:100]}...*
"""
review_status = "βœ… Approved" if review_result['passed'] else "⚠️ Needs Review"
# Add generation method info
debug_info = f"""
**Generation Details:**
- Method: {generation_result.get('method', 'Unknown')}
- Original Prompt: {prompt}
- Enhanced Prompt: {enhanced_prompt}
- Style: {style}
- API Status: {'βœ… Connected' if GOOGLE_AUTH else '⚠️ Demo Mode'}
"""
else:
quality_info = f"Review failed: {review_result.get('error', 'Unknown error')}"
review_status = "❌ Review Failed"
debug_info = f"Generation Method: {generation_result.get('method', 'Unknown')}"
progress(1.0, desc="Complete!")
return display_image, quality_info, review_status, debug_info
except Exception as e:
logger.error(f"Workflow error: {str(e)}")
error_msg = f"Workflow failed: {str(e)}"
return None, error_msg, "❌ Error", f"Error details: {str(e)}"
# ====== GRADIO INTERFACE ======
def create_gradio_interface():
"""Create the complete Gradio interface"""
custom_css = """
.gradio-container {
max-width: 1400px !important;
margin: auto !important;
}
.header-text {
text-align: center;
color: #1f77b4;
margin-bottom: 2rem;
}
.quality-info {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
border-left: 4px solid #1f77b4;
font-family: monospace;
}
.status-approved { color: #28a745; font-weight: bold; }
.status-warning { color: #ffc107; font-weight: bold; }
.status-error { color: #dc3545; font-weight: bold; }
"""
with gr.Blocks(css=custom_css, title="Marketing Image Generator with AI Review") as interface:
# Header
gr.Markdown("""
# 🎨 Marketing Image Generator with AI Review
### Professional marketing images with automated quality assurance
This system combines **Google Imagen** for image generation with **Google Gemini Vision** for intelligent quality review.
Perfect for creating professional marketing materials with AI-powered feedback.
""", elem_classes=["header-text"])
# API Status indicator
api_status = "🟒 Google AI Connected" if GOOGLE_AUTH else "🟑 Demo Mode (No API Key)"
gr.Markdown(f"**Status:** {api_status}")
with gr.Row():
with gr.Column(scale=2):
# Input Section
gr.Markdown("## πŸ“ Describe Your Marketing Image")
prompt = gr.Textbox(
label="Marketing Image Description",
placeholder="e.g., A professional team of diverse colleagues collaborating in a modern office space with natural lighting, for a corporate website hero image",
lines=4,
info="Be specific about subjects, setting, style, and intended marketing use"
)
with gr.Row():
style = gr.Dropdown(
choices=["realistic", "artistic", "cartoon", "illustration", "photographic"],
value="realistic",
label="Art Style",
info="Choose the visual style that fits your brand"
)
quality_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
label="Quality Threshold",
info="Minimum score for approval (0.0 = lenient, 1.0 = strict)"
)
with gr.Accordion("πŸ”§ Advanced Options", open=False):
max_iterations = gr.Slider(
minimum=1,
maximum=3,
value=2,
step=1,
label="Max Review Iterations",
info="Maximum attempts to improve the image"
)
generate_btn = gr.Button(
"πŸš€ Generate & Review Marketing Image",
variant="primary",
size="lg"
)
with gr.Column(scale=3):
# Output Section
gr.Markdown("## πŸ–ΌοΈ Generated Image & Analysis")
with gr.Row():
with gr.Column(scale=2):
generated_image = gr.Image(
label="Your Marketing Image",
type="pil",
interactive=False,
height=400
)
with gr.Column(scale=1):
review_status = gr.Textbox(
label="Review Status",
value="⏳ Ready to Generate",
interactive=False,
max_lines=1
)
quality_info = gr.Markdown(
label="AI Quality Analysis",
value="*Generate an image to see detailed AI quality analysis and recommendations*",
elem_classes=["quality-info"]
)
# Debug/Technical Info (Collapsible)
with gr.Accordion("πŸ”§ Technical Details", open=False):
debug_info = gr.Markdown(
value="*Technical information will appear here after generation*"
)
# Examples Section
gr.Markdown("## πŸ’‘ Example Marketing Prompts")
examples = gr.Examples(
examples=[
["A diverse team of professionals collaborating around a modern conference table in a bright office space, corporate website hero image", "realistic"],
["A sleek product showcase featuring a smartphone on a clean white background with dramatic lighting, for e-commerce", "photographic"],
["A friendly customer service representative wearing a headset, smiling while helping clients in a contemporary office", "realistic"],
["A minimalist workspace setup with laptop, coffee, and plants, perfect for productivity app marketing", "artistic"],
["An abstract representation of data flow and connectivity, modern tech company branding", "illustration"],
["A celebration scene with confetti and happy people, perfect for achievement or success marketing", "realistic"]
],
inputs=[prompt, style],
label="Click any example to try it out!"
)
# Connect the workflow
generate_btn.click(
fn=generate_marketing_image_with_review,
inputs=[prompt, style, quality_threshold, max_iterations],
outputs=[generated_image, quality_info, review_status, debug_info],
show_progress=True
)
# Footer
gr.Markdown("""
---
<div style='text-align: center; color: #666; font-size: 0.9rem;'>
<p>🎨 <strong>Marketing Image Generator with AI Review</strong></p>
<p>Powered by Google Imagen & Gemini Vision | Built for Professional Marketing Teams</p>
<p><em>Generate β†’ Review β†’ Perfect: Your AI-powered creative workflow</em></p>
</div>
""")
return interface
# ====== APPLICATION ENTRY POINT ======
# Create the interface
demo = create_gradio_interface()
if __name__ == "__main__":
logger.info("Starting Marketing Image Generator with AI Review")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
)