File size: 6,797 Bytes
5d5165f a43c45a 5d5165f a43c45a 5d5165f 61ffb8e 503b5f6 5d5165f d12096d 5d5165f 61ffb8e 5d5165f 61ffb8e 5d5165f 61ffb8e 5d5165f 61ffb8e 5d5165f 14765ac 61ffb8e 5d5165f 503b5f6 5d5165f 503b5f6 5d5165f 503b5f6 5d5165f 503b5f6 5d5165f 503b5f6 5d5165f a43c45a 5d5165f 503b5f6 5d5165f 503b5f6 5d5165f 503b5f6 5d5165f a43c45a 5d5165f 503b5f6 5d5165f a43c45a 5d5165f a43c45a 5d5165f a43c45a 5d5165f a43c45a 503b5f6 5d5165f 61ffb8e 5d5165f a43c45a 5d5165f 503b5f6 5d5165f 503b5f6 5d5165f a43c45a 5d5165f a43c45a 5d5165f a43c45a 503b5f6 5d5165f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
import joblib
import numpy as np
import json
import math
import os
import xgboost as xgb
import logging
# === Flask Setup ===
app = Flask(__name__, static_folder='.', static_url_path='')
CORS(app)
logging.basicConfig(level=logging.INFO)
# === Load models ===
try:
rf = joblib.load("rf_model.pkl")
xgb_model = xgb.Booster()
xgb_model.load_model("xgb_model.json")
app.logger.info("β
Models loaded successfully.")
except Exception as e:
app.logger.error(f"β Error loading models: {e}")
raise e
# === Load data ===
with open("tile_catalog.json", "r", encoding="utf-8") as f:
tile_catalog = json.load(f)
with open("tile_sizes.json", "r", encoding="utf-8") as f:
tile_sizes = json.load(f)
# === Serve index.html ===
@app.route('/')
def serve_index():
return app.send_static_file('index.html')
# === Serve static assets (if any JS, CSS, images) ===
@app.route('/<path:path>')
def serve_static_files(path):
return send_from_directory('.', path)
# === Calculate tiles endpoint ===
@app.route('/calculate', methods=['POST'])
def calculate():
try:
data = request.get_json()
for field in ['tile_type', 'length', 'width', 'tile_size']:
if field not in data:
return jsonify({"error": f"Missing field: {field}"}), 400
tile_type = data['tile_type'].lower()
length = float(data['length'])
width = float(data['width'])
validate_positive_number(length, "length")
validate_positive_number(width, "width")
if tile_type not in ['floor', 'wall']:
return jsonify({"error": "Invalid tile type"}), 400
if data['tile_size'] not in tile_sizes:
return jsonify({"error": "Invalid tile size"}), 400
area = length * width
tile_info = tile_sizes[data['tile_size']]
area_per_tile = tile_info['length'] * tile_info['width']
tiles_needed = math.ceil((area / area_per_tile) * 1.1)
tiles_per_box = tile_info.get('tiles_per_box', 10)
boxes_needed = math.ceil(tiles_needed / tiles_per_box)
matching_products = [
{
**p,
"link": p.get("url", "#")
}
for p in tile_catalog
if p['type'].lower() == tile_type and p['size'] == data['tile_size']
]
return jsonify({
"tile_type": tile_type,
"tile_size": data['tile_size'],
"length": round(length, 2),
"width": round(width, 2),
"area": round(area, 2),
"tiles_needed": tiles_needed,
"boxes_needed": boxes_needed,
"matching_products": matching_products[:5],
"total_matches": len(matching_products)
})
except Exception as e:
app.logger.error(f"Error in /calculate: {str(e)}")
return jsonify({"error": "Internal server error"}), 500
# === Recommend endpoint ===
@app.route('/recommend', methods=['POST'])
def recommend():
try:
data = request.get_json()
required_fields = ['tile_type', 'coverage', 'length', 'width', 'price_range']
for field in required_fields:
if field not in data:
return jsonify({"error": f"Missing field: {field}"}), 400
tile_type = data['tile_type'].lower()
length = float(data['length'])
width = float(data['width'])
validate_positive_number(length, "length")
validate_positive_number(width, "width")
area = length * width
validate_positive_number(area, "area")
coverage = float(data['coverage'])
validate_positive_number(coverage, "coverage")
if not isinstance(data['price_range'], list) or len(data['price_range']) != 2:
return jsonify({"error": "Invalid price range"}), 400
features = prepare_features({
**data,
"area": area
})
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
rf_pred = rf.predict_proba(features)[0][1]
combined_score = (xgb_pred + rf_pred) / 2
recommended_products = filter_products(
tile_type=tile_type,
min_price=data['price_range'][0],
max_price=data['price_range'][1],
preferred_sizes=data.get('preferred_sizes', []),
min_score=0.5
)
return jsonify({
"recommendation_score": round(float(combined_score), 3),
"recommended_products": recommended_products[:5],
"calculation": calculate_requirements(area, coverage)
})
except Exception as e:
app.logger.error(f"Error in /recommend: {str(e)}")
return jsonify({"error": "Internal server error"}), 500
# === Helper Functions ===
def prepare_features(data):
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
price_per_sqft = data['price_range'][1] / data['coverage']
budget_efficiency = data['coverage'] / data['price_range'][1]
return np.array([[tile_type_num, data['area'], data['coverage'],
data['price_range'][0], data['price_range'][1],
price_per_sqft, budget_efficiency]])
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
filtered = []
for product in tile_catalog:
if (product['type'].lower() == tile_type and
min_price <= product['price'] <= max_price and
(not preferred_sizes or product['size'] in preferred_sizes)):
price_score = 1 - ((product['price'] - min_price) / (max_price - min_price + 1e-6))
size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
product_score = (price_score + size_score) / 2
if product_score >= min_score:
filtered.append({
**product,
"recommendation_score": round(product_score, 2),
"link": product.get("url", "#")
})
return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)
def calculate_requirements(area, coverage):
min_tiles = math.ceil(area / coverage)
suggested_tiles = math.ceil(min_tiles * 1.1)
return {
"minimum_tiles": min_tiles,
"suggested_tiles": suggested_tiles,
"estimated_cost_range": [
round(area * 3, 2),
round(area * 10, 2)
]
}
def validate_positive_number(value, field):
if not isinstance(value, (int, float)) or value <= 0:
raise ValueError(f"{field} must be a positive number")
# === Start the server ===
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=False)
|