File size: 6,797 Bytes
5d5165f
 
 
 
a43c45a
 
5d5165f
a43c45a
5d5165f
61ffb8e
503b5f6
 
5d5165f
 
d12096d
5d5165f
61ffb8e
5d5165f
61ffb8e
 
5d5165f
61ffb8e
5d5165f
 
61ffb8e
5d5165f
 
14765ac
61ffb8e
5d5165f
 
 
503b5f6
5d5165f
 
503b5f6
5d5165f
503b5f6
5d5165f
503b5f6
5d5165f
 
503b5f6
5d5165f
 
a43c45a
5d5165f
503b5f6
5d5165f
 
 
 
 
 
 
 
 
503b5f6
 
 
 
 
 
 
5d5165f
 
 
 
 
 
 
 
 
 
 
503b5f6
5d5165f
a43c45a
 
5d5165f
503b5f6
5d5165f
 
 
a43c45a
5d5165f
 
 
a43c45a
5d5165f
a43c45a
5d5165f
 
a43c45a
503b5f6
5d5165f
61ffb8e
5d5165f
 
 
 
 
 
a43c45a
5d5165f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503b5f6
5d5165f
 
 
 
503b5f6
5d5165f
 
 
 
 
 
a43c45a
5d5165f
 
 
 
 
 
 
 
 
 
 
 
 
a43c45a
 
5d5165f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a43c45a
503b5f6
5d5165f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
import joblib
import numpy as np
import json
import math
import os
import xgboost as xgb
import logging

# === Flask Setup ===
app = Flask(__name__, static_folder='.', static_url_path='')
CORS(app)
logging.basicConfig(level=logging.INFO)

# === Load models ===
try:
    rf = joblib.load("rf_model.pkl")
    xgb_model = xgb.Booster()
    xgb_model.load_model("xgb_model.json")
    app.logger.info("βœ… Models loaded successfully.")
except Exception as e:
    app.logger.error(f"❌ Error loading models: {e}")
    raise e

# === Load data ===
with open("tile_catalog.json", "r", encoding="utf-8") as f:
    tile_catalog = json.load(f)

with open("tile_sizes.json", "r", encoding="utf-8") as f:
    tile_sizes = json.load(f)

# === Serve index.html ===
@app.route('/')
def serve_index():
    return app.send_static_file('index.html')

# === Serve static assets (if any JS, CSS, images) ===
@app.route('/<path:path>')
def serve_static_files(path):
    return send_from_directory('.', path)

# === Calculate tiles endpoint ===
@app.route('/calculate', methods=['POST'])
def calculate():
    try:
        data = request.get_json()
        for field in ['tile_type', 'length', 'width', 'tile_size']:
            if field not in data:
                return jsonify({"error": f"Missing field: {field}"}), 400

        tile_type = data['tile_type'].lower()
        length = float(data['length'])
        width = float(data['width'])
        validate_positive_number(length, "length")
        validate_positive_number(width, "width")

        if tile_type not in ['floor', 'wall']:
            return jsonify({"error": "Invalid tile type"}), 400
        if data['tile_size'] not in tile_sizes:
            return jsonify({"error": "Invalid tile size"}), 400

        area = length * width
        tile_info = tile_sizes[data['tile_size']]
        area_per_tile = tile_info['length'] * tile_info['width']
        tiles_needed = math.ceil((area / area_per_tile) * 1.1)
        tiles_per_box = tile_info.get('tiles_per_box', 10)
        boxes_needed = math.ceil(tiles_needed / tiles_per_box)

        matching_products = [
            {
                **p,
                "link": p.get("url", "#")
            }
            for p in tile_catalog
            if p['type'].lower() == tile_type and p['size'] == data['tile_size']
        ]

        return jsonify({
            "tile_type": tile_type,
            "tile_size": data['tile_size'],
            "length": round(length, 2),
            "width": round(width, 2),
            "area": round(area, 2),
            "tiles_needed": tiles_needed,
            "boxes_needed": boxes_needed,
            "matching_products": matching_products[:5],
            "total_matches": len(matching_products)
        })

    except Exception as e:
        app.logger.error(f"Error in /calculate: {str(e)}")
        return jsonify({"error": "Internal server error"}), 500

# === Recommend endpoint ===
@app.route('/recommend', methods=['POST'])
def recommend():
    try:
        data = request.get_json()
        required_fields = ['tile_type', 'coverage', 'length', 'width', 'price_range']
        for field in required_fields:
            if field not in data:
                return jsonify({"error": f"Missing field: {field}"}), 400

        tile_type = data['tile_type'].lower()
        length = float(data['length'])
        width = float(data['width'])
        validate_positive_number(length, "length")
        validate_positive_number(width, "width")
        area = length * width
        validate_positive_number(area, "area")
        coverage = float(data['coverage'])
        validate_positive_number(coverage, "coverage")

        if not isinstance(data['price_range'], list) or len(data['price_range']) != 2:
            return jsonify({"error": "Invalid price range"}), 400

        features = prepare_features({
            **data,
            "area": area
        })

        xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
        rf_pred = rf.predict_proba(features)[0][1]
        combined_score = (xgb_pred + rf_pred) / 2

        recommended_products = filter_products(
            tile_type=tile_type,
            min_price=data['price_range'][0],
            max_price=data['price_range'][1],
            preferred_sizes=data.get('preferred_sizes', []),
            min_score=0.5
        )

        return jsonify({
            "recommendation_score": round(float(combined_score), 3),
            "recommended_products": recommended_products[:5],
            "calculation": calculate_requirements(area, coverage)
        })

    except Exception as e:
        app.logger.error(f"Error in /recommend: {str(e)}")
        return jsonify({"error": "Internal server error"}), 500

# === Helper Functions ===
def prepare_features(data):
    tile_type_num = 0 if data['tile_type'] == 'floor' else 1
    price_per_sqft = data['price_range'][1] / data['coverage']
    budget_efficiency = data['coverage'] / data['price_range'][1]

    return np.array([[tile_type_num, data['area'], data['coverage'],
                      data['price_range'][0], data['price_range'][1],
                      price_per_sqft, budget_efficiency]])

def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
    filtered = []
    for product in tile_catalog:
        if (product['type'].lower() == tile_type and
            min_price <= product['price'] <= max_price and
            (not preferred_sizes or product['size'] in preferred_sizes)):

            price_score = 1 - ((product['price'] - min_price) / (max_price - min_price + 1e-6))
            size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
            product_score = (price_score + size_score) / 2

            if product_score >= min_score:
                filtered.append({
                    **product,
                    "recommendation_score": round(product_score, 2),
                    "link": product.get("url", "#")
                })

    return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)

def calculate_requirements(area, coverage):
    min_tiles = math.ceil(area / coverage)
    suggested_tiles = math.ceil(min_tiles * 1.1)
    return {
        "minimum_tiles": min_tiles,
        "suggested_tiles": suggested_tiles,
        "estimated_cost_range": [
            round(area * 3, 2),
            round(area * 10, 2)
        ]
    }

def validate_positive_number(value, field):
    if not isinstance(value, (int, float)) or value <= 0:
        raise ValueError(f"{field} must be a positive number")

# === Start the server ===
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=False)