Tile / index.html
Coots's picture
Create index.html
75e2b50 verified
raw
history blame
5.71 kB
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import joblib
import xgboost as xgb
import numpy as np
import json
import math
import os
import logging
app = Flask(__name__)
CORS(app)
logging.basicConfig(level=logging.INFO)
# Load models
try:
rf = joblib.load("rf_model.pkl")
xgb_model = xgb.Booster()
xgb_model.load_model("xgb_model.json")
app.logger.info("βœ… Models loaded successfully.")
except Exception as e:
app.logger.error(f"❌ Error loading models: {e}")
raise e
# Load tile metadata
with open("tile_catalog.json", "r", encoding="utf-8") as f:
tile_catalog = json.load(f)
with open("tile_sizes.json", "r", encoding="utf-8") as f:
tile_sizes = json.load(f)
@app.route("/")
def home():
return send_file("index.html")
@app.route('/recommend', methods=['POST'])
def recommend():
try:
data = request.get_json()
required = ['tile_type', 'coverage', 'area', 'price_range']
if not all(k in data for k in required):
return jsonify({"error": "Missing required fields"}), 400
tile_type = data['tile_type'].lower()
if tile_type not in ['floor', 'wall']:
return jsonify({"error": "Invalid tile type"}), 400
validate_positive_number(data['coverage'], "coverage")
validate_positive_number(data['area'], "area")
pr = data['price_range']
if (not isinstance(pr, list) or len(pr) != 2 or pr[0] < 0 or pr[1] <= 0 or pr[0] >= pr[1]):
return jsonify({"error": "Invalid price range"}), 400
features = prepare_features(data)
xgb_pred = float(xgb_model.predict(xgb.DMatrix(features))[0])
rf_pred = float(rf.predict_proba(features)[0][1])
combined_score = (xgb_pred + rf_pred) / 2
recommended = filter_products(
tile_type=tile_type,
min_price=pr[0],
max_price=pr[1],
preferred_sizes=data.get("preferred_sizes", []),
min_score=0.5
)
return jsonify({
"recommendation_score": round(combined_score, 3),
"total_matches": len(recommended),
"recommended_products": recommended[:5],
"calculation": calculate_requirements(data['area'], data['coverage'])
})
except Exception as e:
app.logger.error(f"Error in /recommend: {e}")
return jsonify({"error": "Internal server error"}), 500
@app.route('/calculate', methods=['POST'])
def calculate():
try:
data = request.get_json()
for k in ['tile_type', 'area', 'tile_size']:
if k not in data:
return jsonify({"error": f"Missing field: {k}"}), 400
tile_type = data['tile_type'].lower()
if tile_type not in ['floor', 'wall']:
return jsonify({"error": "Invalid tile type"}), 400
tile_size_key = data['tile_size']
if tile_size_key not in tile_sizes:
return jsonify({"error": "Invalid tile size"}), 400
validate_positive_number(data['area'], "area")
tile_info = tile_sizes[tile_size_key]
area_per_tile = tile_info['length'] * tile_info['width']
tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1)
tiles_per_box = tile_info.get('tiles_per_box', 10)
boxes_needed = math.ceil(tiles_needed / tiles_per_box)
matching = [
p for p in tile_catalog
if p['type'].lower() == tile_type and p['size'] == tile_size_key
]
return jsonify({
"tile_type": tile_type,
"area": data['area'],
"tile_size": tile_size_key,
"tiles_needed": tiles_needed,
"boxes_needed": boxes_needed,
"matching_products": matching[:3],
"total_matches": len(matching)
})
except Exception as e:
app.logger.error(f"Error in /calculate: {e}")
return jsonify({"error": "Internal server error"}), 500
def prepare_features(data):
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
price_per_sqft = data['price_range'][1] / data['coverage']
budget_efficiency = data['coverage'] / data['price_range'][1]
return np.array([[
tile_type_num,
data['area'],
data['coverage'],
data['price_range'][0],
data['price_range'][1],
price_per_sqft,
budget_efficiency
]])
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
results = []
for p in tile_catalog:
if (
p['type'].lower() == tile_type and
min_price <= p['price'] <= max_price and
(not preferred_sizes or p['size'] in preferred_sizes)
):
price_score = 1 - ((p['price'] - min_price) / (max_price - min_price + 1e-6))
size_score = 1 if not preferred_sizes or p['size'] in preferred_sizes else 0.5
score = (price_score + size_score) / 2
if score >= min_score:
results.append({**p, "recommendation_score": round(score, 2)})
return sorted(results, key=lambda x: x['recommendation_score'], reverse=True)
def calculate_requirements(area, coverage):
min_tiles = math.ceil(area / coverage)
suggested = math.ceil(min_tiles * 1.1)
return {
"minimum_tiles": min_tiles,
"suggested_tiles": suggested,
"estimated_cost_range": [round(area * 3, 2), round(area * 10, 2)]
}
def validate_positive_number(value, field):
if not isinstance(value, (int, float)) or value <= 0:
raise ValueError(f"{field} must be a positive number")
if __name__ == '__main__':
app.run(host="0.0.0.0", port=5000, debug=True)