File size: 8,788 Bytes
0a9cf85 d36e58a 0a9cf85 fc76090 0a9cf85 d36e58a 0a9cf85 d36e58a 4714bb4 0a9cf85 d36e58a 0a9cf85 d36e58a 0a9cf85 d36e58a 0a9cf85 fc76090 d36e58a fc76090 d36e58a fc76090 46d8aae fc76090 0a9cf85 c3b823e 0a9cf85 c3b823e 0a9cf85 d36e58a 0a9cf85 29ff960 0a9cf85 d36e58a 4714bb4 d36e58a 0a9cf85 fc76090 f870389 d36e58a f870389 0a9cf85 d36e58a 0a9cf85 d36e58a f870389 d36e58a fc76090 46d8aae fc76090 0a9cf85 d36e58a 0a9cf85 d36e58a 0a9cf85 d36e58a 0a9cf85 29ff960 d36e58a 0a9cf85 29ff960 d36e58a 0a9cf85 d36e58a 0a9cf85 fc76090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
import cv2
import sys
import torch
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
from src.model import ConditionalUNet
from huggingface_hub import hf_hub_download
import time
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
#device = 'cpu'
img_shape = (1, 28, 28)
def resize(image,size=(200,200)):
stretch_near = cv2.resize(image, size, interpolation = cv2.INTER_LINEAR)
return stretch_near
model_diff = ConditionalUNet().to(device)
model_path = hf_hub_download(repo_id="CristianLazoQuispe/MNIST_Diff_Flow_matching", filename="outputs/diffusion/diffusion_model.pth",
cache_dir="models")
print("Diff Downloaded!")
model_diff.load_state_dict(torch.load(model_path, map_location=device))
model_diff.eval()
model_flow = ConditionalUNet().to(device)
model_path = hf_hub_download(repo_id="CristianLazoQuispe/MNIST_Diff_Flow_matching", filename="outputs/flow_matching/flow_model.pth",
cache_dir="models")
print("Flow Downloaded!")
model_flow.load_state_dict(torch.load(model_path, map_location=device))
model_flow.eval()
@torch.no_grad()
def generate_diffusion_intermediates_streaming(label):
timesteps = 500
betas = torch.linspace(1e-4, 0.02, timesteps)
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0).to(device)
x = torch.randn(1, *img_shape).to(device)
y = torch.tensor([label], dtype=torch.long, device=device)
# Inicial
img_np = ((x + 1) / 2.0)[0, 0].clamp(0, 1).cpu().numpy()
# Para mantener la posición de cada imagen
outputs = [None] * 13
yield tuple(outputs)
outputs[0] = resize(img_np)
yield tuple(outputs)
time.sleep(0.2)
for t in reversed(range(timesteps)):
t_tensor = torch.full((x.size(0),), t, device=device, dtype=torch.float)
noise_pred = model_diff(x, t_tensor, y)
x = (1 / alphas[t].sqrt()) * (x - noise_pred * betas[t] / (1 - alphas_cumprod[t]).sqrt() )
if t > 0:
noise = torch.randn(1, *img_shape).to(device)
v = (1 - alphas_cumprod[t - 1]) / (1 - alphas_cumprod[t]) * betas[t]
x += v.sqrt() * noise
x = x.clamp(-1, 1)
if t in [499, 399, 299, 199, 99, 0]:
step_idx = {499: 6, 399: 7, 299: 8, 199: 9, 99: 10, 0: 11}[t]
v_mag = noise_pred[0, 0].abs().clamp(0, 3).cpu().numpy()
v_mag = (v_mag - v_mag.min()) / (v_mag.max() - v_mag.min() + 1e-5)
vel_colored = plt.get_cmap("coolwarm")(v_mag)[:, :, :3]
vel_colored = (vel_colored * 255).astype(np.uint8)
outputs[step_idx] = resize(vel_colored)
yield tuple(outputs)
outputs[12] = resize(((x + 1) / 2.0)[0, 0].cpu().numpy(),(300,300))
if t in [400, 300, 200, 100, 1, 0]:
step_idx = {400: 1, 300: 2, 200: 3, 100: 4, 1: 5, 0 :12}[t]
if t==0:
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].cpu().numpy(),(300,300))
else:
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].cpu().numpy())
yield tuple(outputs)
if t % 10 == 0:
yield tuple(outputs)
time.sleep(0.06)
#time.sleep(0.1)
yield tuple(outputs)
def generate_localized_noise(shape, radius=5):
"""Genera una imagen con ruido solo en un círculo en el centro."""
B, C, H, W = shape
assert C == 1, "Solo imágenes en escala de grises."
# Crear máscara circular
yy, xx = torch.meshgrid(torch.arange(H), torch.arange(W), indexing='ij')
center_y, center_x = H // 2, W // 2
mask = ((yy - center_y)**2 + (xx - center_x)**2) <= radius**2
mask = mask.float().unsqueeze(0).unsqueeze(0) # (1, 1, H, W)
# Aplicar máscara a ruido
noise = torch.randn(B, C, H, W)
localized_noise = noise * mask + -1*(1-mask) # solo hay ruido dentro del círculo
#mask = ((yy - center_y)**2 + (xx - center_x)**2) >= (radius//2)**2
#mask = mask.float().unsqueeze(0).unsqueeze(0) # (1, 1, H, W)
#localized_noise = localized_noise * mask + -1*(1-mask) # solo hay ruido dentro del círculo
return localized_noise
@torch.no_grad()
def generate_flow_intermediates_streaming(label):
x = torch.randn(1, *img_shape).to(device)
#x = generate_localized_noise((1, 1, 28, 28), radius=12).to(device)
y = torch.full((1,), label, dtype=torch.long, device=device)
steps = 50
dt = 1.0 / steps
images = [(x + 1) / 2.0] # initial noise
vel_magnitudes = []
# Inicial
img_np = ((x + 1) / 2.0)[0, 0].clamp(0, 1).cpu().numpy()
# Para mantener la posición de cada imagen
outputs = [None] * 13
yield tuple(outputs)
outputs[0] = resize(img_np)
yield tuple(outputs)
time.sleep(0.2)
for i in range(steps):
t = torch.full((1,), i * dt, device=device)
v = model_flow(x, t, y)
x = x + v * dt
outputs[12] = resize(((x + 1) / 2.0)[0, 0].clamp(0, 1).cpu().numpy(),(300,300))
if i in [10,20,30,40,48,49]: #
step_idx = {10: 1, 20: 2, 30: 3, 40: 4, 48: 5,49:12}[i] #,
if i==49:
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].clamp(0, 1).cpu().numpy(),(300,300))
else:
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].clamp(0, 1).cpu().numpy())
yield tuple(outputs)
# Compute velocity magnitude and convert to numpy for visualization
if i in [0,11,21,31,41,49]:
v_mag = dt*v[0, 0].abs().clamp(0, 3).cpu().numpy() # Clamp to max value for better contrast
v_mag = (v_mag - v_mag.min()) / (v_mag.max() - v_mag.min() + 1e-5)
vel_colored = plt.get_cmap("coolwarm")(v_mag)[:, :, :3] # (H,W,3)
vel_colored = (vel_colored * 255).astype(np.uint8)
step_idx = {0: 6, 11: 7, 21: 8, 31: 9, 41: 10, 49:11}[i]
outputs[step_idx] = resize(vel_colored)
yield tuple(outputs)
if t % 10 == 0:
yield tuple(outputs)
time.sleep(0.06)
#time.sleep(0.1)
yield tuple(outputs)
with gr.Blocks() as demo:
gr.Markdown("# Conditional MNIST Generation: Diffusion vs Flow Matching")
with gr.Tab("Diffusion"):
label_d = gr.Slider(0, 9, step=1, label="Digit Label")
btn_d = gr.Button("Generate")
with gr.Row():
outs_d = [
gr.Image(label="Noise",streaming=True),
gr.Image(label="Diffusion t=400",streaming=True),
gr.Image(label="Diffusion t=300",streaming=True),
gr.Image(label="Diffusion t=200",streaming=True),
gr.Image(label="Diffusion t=100",streaming=True),
gr.Image(label="Diffusion t=1",streaming=True),
]
with gr.Row():
#400, 300, 200, 100,0
diff_noise_imgs = [
gr.Image(label="Noise pred t=500",streaming=True),
gr.Image(label="Noise pred t=400",streaming=True),
gr.Image(label="Noise pred t=300",streaming=True),
gr.Image(label="Noise pred t=200",streaming=True),
gr.Image(label="Noise pred t=100",streaming=True),
gr.Image(label="Noise pred t=1",streaming=True),
]
with gr.Row():
diff_result_imgs = [
gr.Image(label="Diffusion t=0",streaming=True),
]
btn_d.click(fn=generate_diffusion_intermediates_streaming, inputs=label_d, outputs=outs_d+diff_noise_imgs+diff_result_imgs)
with gr.Tab("Flow Matching"):
label_f = gr.Slider(0, 9, step=1, label="Digit Label")
btn_f = gr.Button("Generate")
with gr.Row():
outs_f = [
gr.Image(label="Noise"),
gr.Image(label="Flow step=10"),
gr.Image(label="Flow step=20"),
gr.Image(label="Flow step=30"),
gr.Image(label="Flow step=40"),
gr.Image(label="Flow step=48"),
]
with gr.Row():
#100,200,300,400,499
flow_vel_imgs = [
gr.Image(label="Velocity step=0"),
gr.Image(label="Velocity step=10"),
gr.Image(label="Velocity step=20"),
gr.Image(label="Velocity step=30"),
gr.Image(label="Velocity step=40"),
gr.Image(label="Velocity step=48")
]
with gr.Row():
flow_result_imgs = [
gr.Image(label="Flow step=49",streaming=True),
]
btn_f.click(fn=generate_flow_intermediates_streaming, inputs=label_f, outputs=outs_f+flow_vel_imgs+flow_result_imgs)
demo.launch()
#demo.launch(share=False, server_port=9071)
|