Cylanoid's picture
oh boy oh noooo
c1c1cb3
raw
history blame
3.98 kB
from transformers import LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments
from transformers import BitsAndBytesConfig
import datasets
import torch
from torch.nn.utils.rnn import pad_sequence
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from accelerate import Accelerator
# Version and CUDA check
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA version: {torch.version.cuda}")
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Load Llama model and tokenizer
MODEL_ID = "meta-llama/Llama-2-7b-hf"
tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID)
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# Quantization config
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
# Load model with FlashAttention 2
model = LlamaForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
attn_implementation="flash_attention_2"
)
# Prepare for LoRA
model = prepare_model_for_kbit_training(model)
peft_config = LoraConfig(
r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
# Load dataset
dataset = datasets.load_dataset("json", data_files="final_combined_fraud_data.json", field="training_pairs")
print("First example from dataset:", dataset["train"][0])
# Tokenization with lists (no tensors)
def tokenize_data(example):
formatted_text = f"{example['input']} {example['output']}"
inputs = tokenizer(formatted_text, truncation=True, max_length=2048)
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
labels = input_ids.copy()
input_len = len(tokenizer(example['input'])["input_ids"])
labels[:input_len] = [-100] * input_len
return {
"input_ids": input_ids,
"labels": labels,
"attention_mask": attention_mask
}
tokenized_dataset = dataset["train"].map(tokenize_data, batched=False, remove_columns=dataset["train"].column_names)
# Print first example (lists with lengths)
first_example = tokenized_dataset[0]
print("First tokenized example:", {k: (type(v), len(v)) for k, v in first_example.items()})
# Data collator: convert lists to tensors and pad
def custom_data_collator(features):
input_ids = [torch.tensor(f["input_ids"]) for f in features]
attention_mask = [torch.tensor(f["attention_mask"]) for f in features]
labels = [torch.tensor(f["labels"]) for f in features]
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0)
labels = pad_sequence(labels, batch_first=True, padding_value=-100)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
# Accelerator and training
accelerator = Accelerator()
training_args = TrainingArguments(
output_dir="./fine_tuned_llama2", per_device_train_batch_size=4, gradient_accumulation_steps=4,
eval_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=100, save_total_limit=3,
num_train_epochs=3, learning_rate=2e-5, weight_decay=0.01, logging_dir="./logs", logging_steps=10,
bf16=True, gradient_checkpointing=True, optim="adamw_torch", warmup_steps=100
)
trainer = Trainer(
model=model, args=training_args,
train_dataset=tokenized_dataset.select(range(90)),
eval_dataset=tokenized_dataset.select(range(90, 112)),
data_collator=custom_data_collator
)
trainer.train()
model.save_pretrained("./fine_tuned_llama2")
tokenizer.save_pretrained("./fine_tuned_llama2")
print("Training complete. Model and tokenizer saved to ./fine_tuned_llama2")