File size: 2,146 Bytes
939b332 1589f78 939b332 86110dd 01dd930 86110dd 939b332 86110dd 01dd930 939b332 56d8047 57fe85f 263b2ce 57fe85f 939b332 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import numpy as np
import pandas as pd
def get_physical_db():
"""
Reads the physical_database.csv file from the physical_db directory and
returns a pandas DataFrame containing only the columns 'Code_Sector',
'Azimut', 'Longitude', 'Latitude', and 'Hauteur'.
Returns:
pd.DataFrame: A DataFrame containing the filtered columns.
"""
physical = pd.read_csv(r"./physical_db/physical_database.csv")
physical = physical[["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur"]]
return physical
class UtilsVars:
sector_mapping = {4: 1, 5: 2, 6: 3, 11: 1, 12: 2, 13: 3}
type_cellule = {1: "Macro Cell 1800", 0: "Macro Cell 900"}
oml_band_frequence = {1: "OML BAND GSM 1800", 0: "OML BAND GSM 900"}
gsm_band = {1: "G1800", 0: "G900"}
configuration_schema = {1: "EGPRS 1800", 0: "EGPRS 900"}
channeltype_mapping = {4: "BCCH", 3: "TCH"}
porteuse_mapping = {
3004: "OML UTRA Band VIII",
3006: "OML UTRA Band VIII",
10812: "OML UTRA Band I",
10787: "OML UTRA Band I",
10837: "OML UTRA Band I",
}
wcdma_band = {
3004: "U900",
3006: "U900",
10787: "U2100",
10837: "U2100",
10812: "U2100",
}
final_lte_database = ""
final_gsm_database = ""
final_wcdma_database = ""
final_trx_database = ""
all_db_dfs = []
final_all_database = ""
neighbors_database = ""
file_path = ""
physisal_db = get_physical_db()
# print(UtilsVars.physisal_db)
def get_band(text):
"""
Extract the band from the given string.
Parameters
----------
text : str
The string to extract the band from.
Returns
-------
str or np.nan
The extracted band, or NaN if the text was not a string or did not contain
any of the recognized bands (L1800, L2300, L800).
"""
if isinstance(text, str): # Check if text is a string
if "L1800" in text:
return "L1800"
elif "L2300" in text:
return "L2300"
elif "L800" in text:
return "L800"
return np.nan # or return None
|