File size: 8,471 Bytes
939b332
 
ad021df
 
01dd930
939b332
fbf7879
939b332
 
 
 
bb3e08f
939b332
 
 
8ccf333
939b332
 
 
 
3615d9c
939b332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86110dd
 
 
01dd930
939b332
 
 
 
 
 
 
 
bb3e08f
 
 
 
 
 
 
939b332
 
 
 
 
 
 
 
 
 
56d8047
939b332
 
 
 
 
 
 
fbf7879
 
 
 
3615d9c
939b332
8ccf333
 
 
939b332
 
 
 
 
 
 
 
86110dd
01dd930
 
 
86110dd
 
 
 
01dd930
 
 
86110dd
 
 
 
 
 
939b332
 
 
 
 
 
 
 
 
 
 
 
 
 
56d8047
939b332
 
bb3e08f
 
 
01dd930
 
 
939b332
bb3e08f
939b332
01dd930
bb3e08f
 
 
 
939b332
 
 
 
 
01dd930
939b332
1a209e6
939b332
 
ad021df
57fe85f
 
 
 
 
ad021df
 
 
 
 
 
ccb28f5
 
ad021df
 
 
57fe85f
01dd930
 
 
 
 
 
ad021df
 
fbf7879
 
 
 
 
 
ccb28f5
 
fbf7879
ccb28f5
 
fbf7879
 
 
 
 
 
 
 
 
 
 
 
 
 
0c61244
 
 
 
 
 
fbf7879
 
0c61244
 
 
 
 
701ad60
 
 
 
 
 
0c61244
 
 
 
 
 
 
 
 
701ad60
 
 
 
 
0c61244
701ad60
0c61244
701ad60
0c61244
701ad60
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import pandas as pd

from queries.process_mal import process_mal_data, process_mal_with_bts_name
from queries.process_trx import process_trx_data, process_trx_with_bts_name
from utils.config_band import config_band
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.utils_vars import GsmAnalysisData, UtilsVars

BTS_COLUMNS = [
    "ID_BCF",
    "ID_BTS",
    "ID_MAL",
    "BSC",
    "BCF",
    "BTS",
    "usedMobileAllocation",
    "code",
    "plmnPermitted",
    "frequencyBandInUse",
    "name",
    "Region",
    "adminState",
    "allowIMSIAttachDetach",
    "amrSegLoadDepTchRateLower",
    "amrSegLoadDepTchRateUpper",
    "antennaHopping",
    "bcchTrxPower",
    "bsIdentityCodeBCC",
    "bsIdentityCodeNCC",
    "BSIC",
    "cellId",
    "dedicatedGPRScapacity",
    "defaultGPRScapacity",
    "fddQMin",
    "fddQOffset",
    "fddRscpMin",
    "gprsEnabled",
    "locationAreaIdLAC",
    "rac",
    "rachDropRxLevelThreshold",
    "sectorId",
    "SectorId2",
    "segmentId",
    "fastReturnToLTE",
    "gsmPriority",
    "segmentName",
    "Code_Sector",
    "band_frequence",
    "type_cellule",
    "configuration_schema",
    "band",
]

BCF_COLUMNS = [
    "ID_BCF",
    "site_name",
]


def compare_trx_tch_versus_mal(tch1, tch2):
    # Split the strings by commas, convert to sets, and compare
    set1 = set(str(tch1).split(",")) if isinstance(tch1, str) else set()
    set2 = set(str(tch2).split(",")) if isinstance(tch2, str) else set()
    return set1 == set2


def process_gsm_data(file_path: str):
    """
    Process data from the specified file path.

    Args:
        file_path (str): The path to the file.
    """
    # Read the specific sheet into a DataFrame
    dfs = pd.read_excel(
        file_path,
        sheet_name=["BTS", "BCF"],
        engine="calamine",
        skiprows=[0],
    )

    # Process BTS data
    df_bts = dfs["BTS"]
    df_bts.columns = df_bts.columns.str.replace(r"[ ]", "", regex=True)
    df_bts["code"] = df_bts["name"].str.split("_").str[0]
    df_bts["code"] = (
        pd.to_numeric(df_bts["code"], errors="coerce").fillna(0).astype(int)
    )
    df_bts["Region"] = df_bts["name"].str.split("_").str[1]
    df_bts["ID_BTS"] = df_bts[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
    df_bts["ID_MAL"] = (
        df_bts[["BSC", "usedMobileAllocation"]].astype(str).apply("_".join, axis=1)
    )
    df_bts["BSIC"] = (
        df_bts[["bsIdentityCodeNCC", "bsIdentityCodeBCC"]]
        .astype(str)
        .apply("".join, axis=1)
    )
    df_bts["SectorId2"] = (
        df_bts["sectorId"].map(UtilsVars.sector_mapping).fillna(df_bts["sectorId"])
    )
    df_bts["band_frequence"] = (
        df_bts["frequencyBandInUse"]
        .map(UtilsVars.oml_band_frequence)
        .fillna("not found")
    )
    df_bts["type_cellule"] = (
        df_bts["frequencyBandInUse"].map(UtilsVars.type_cellule).fillna("not found")
    )
    df_bts["band"] = (
        df_bts["frequencyBandInUse"].map(UtilsVars.gsm_band).fillna("not found")
    )
    df_bts["configuration_schema"] = (
        df_bts["frequencyBandInUse"]
        .map(UtilsVars.configuration_schema)
        .fillna("not found")
    )

    df_bts["ID_BCF"] = df_bts[["BSC", "BCF"]].astype(str).apply("_".join, axis=1)
    df_bts["Code_Sector"] = (
        df_bts[["code", "SectorId2"]].astype(str).apply("_".join, axis=1)
    )
    df_bts["Code_Sector"] = df_bts["Code_Sector"].str.replace(".0", "")
    df_bts = df_bts[BTS_COLUMNS]

    # Process BCF data
    df_bcf = dfs["BCF"]
    df_bcf.columns = df_bcf.columns.str.replace(r"[ ]", "", regex=True)
    df_bcf["ID_BCF"] = df_bcf[["BSC", "BCF"]].astype(str).apply("_".join, axis=1)
    df_bcf.rename(columns={"name": "site_name"}, inplace=True)
    df_bcf = df_bcf[BCF_COLUMNS]

    # Process TRX data
    df_trx = process_trx_data(file_path)

    # Process MAL data
    df_mal = process_mal_data(file_path)

    # create band dataframe
    df_band = config_band(df_bts)

    # Merge dataframes
    df_bts_bcf = pd.merge(df_bcf, df_bts, on="ID_BCF", how="left")
    df_2g = pd.merge(df_bts_bcf, df_trx, on="ID_BTS", how="left")
    df_2g = pd.merge(df_2g, df_band, on="code", how="left")
    df_2g = pd.merge(df_2g, df_mal, on="ID_MAL", how="left")
    df_2g["TRX_TCH_VS_MAL"] = df_2g.apply(
        lambda row: compare_trx_tch_versus_mal(row["TRX_TCH"], row["MAL_TCH"]), axis=1
    )

    df_physical_db = UtilsVars.physisal_db
    df_2g = pd.merge(df_2g, df_physical_db, on="Code_Sector", how="left")

    # Save dataframes
    # save_dataframe(df_band, "BAND")
    # save_dataframe(df_bcf, "bcf")
    # save_dataframe(df_trx, "trx")
    # df_2g2 = save_dataframe(df_2g, "2g")

    # UtilsVars.all_db_dfs.append(df_2g)
    # UtilsVars.final_gsm_database = convert_dfs([df_2g], ["GSM"])
    # UtilsVars.final_gsm_database = [df_2g]
    return df_2g


def combined_gsm_database(file_path: str):
    gsm_df = process_gsm_data(file_path)
    mal_df = process_mal_with_bts_name(file_path)
    trx_df = process_trx_with_bts_name(file_path)

    UtilsVars.all_db_dfs.extend([gsm_df, mal_df, trx_df])
    UtilsVars.gsm_dfs.extend([gsm_df, mal_df, trx_df])
    UtilsVars.all_db_dfs_names.extend(["GSM", "MAL", "TRX"])
    return [gsm_df, mal_df, trx_df]


def process_gsm_data_to_excel(file_path: str):
    """
    Process data from the specified file path and save it to a excel file.

    Args:
        file_path (str): The path to the file.
    """
    gsm_dfs = combined_gsm_database(file_path)
    UtilsVars.final_gsm_database = convert_dfs(gsm_dfs, ["GSM", "MAL", "TRX"])


#############################GSM ANALYSIS#################################


def gsm_analaysis(file_path: str):
    # gsm_df = process_gsm_data(file_path)
    # trx_df = process_trx_with_bts_name(file_path)

    gsm_df: pd.DataFrame = UtilsVars.gsm_dfs[0]
    trx_df: pd.DataFrame = UtilsVars.gsm_dfs[2]
    # df to count number of site per bsc
    df_site_per_bsc = gsm_df[["BSC", "code"]]
    df_site_per_bsc = df_site_per_bsc.drop_duplicates(subset=["code"], keep="first")

    GsmAnalysisData.total_number_of_bsc = len(gsm_df["BSC"].unique())
    GsmAnalysisData.total_number_of_cell = len(gsm_df["ID_BTS"].unique())
    GsmAnalysisData.number_of_site = len(gsm_df["site_name"].unique())
    GsmAnalysisData.number_of_cell_per_bsc = gsm_df["BSC"].value_counts()
    GsmAnalysisData.number_of_site_per_bsc = df_site_per_bsc["BSC"].value_counts()
    GsmAnalysisData.number_of_bts_name_empty = gsm_df["name"].isna().sum()
    GsmAnalysisData.number_of_bcf_name_empty = gsm_df["site_name"].isna().sum()
    GsmAnalysisData.number_of_bcch_empty = gsm_df["BCCH"].isna().sum()
    GsmAnalysisData.bts_administate_distribution = gsm_df["adminState"].value_counts()
    GsmAnalysisData.trx_administate_distribution = trx_df["adminState"].value_counts()

    # GsmAnalysisData.trx_administate_distribution = (
    #     trx_df["adminState"]
    #     .value_counts()
    #     .reset_index()
    #     .rename(columns={"index": "value", 0: "count"})
    # )

    GsmAnalysisData.number_of_trx_per_bsc = trx_df["BSC"].value_counts()
    # GsmAnalysisData.number_of_cell_per_lac = gsm_df["locationAreaIdLAC"].value_counts()
    GsmAnalysisData.number_of_cell_per_lac = (
        gsm_df.groupby(["BSC", "locationAreaIdLAC"]).size().reset_index(name="count")
    )

    # Get BSC name
    GsmAnalysisData.number_of_cell_per_lac["BSC_NAME"] = (
        GsmAnalysisData.number_of_cell_per_lac["BSC"].map(UtilsVars.bsc_name).fillna("")
    )

    # Rename columns
    GsmAnalysisData.number_of_cell_per_lac.rename(
        columns={"BSC": "BSC", "locationAreaIdLAC": "LAC", "count": "count"},
        inplace=True,
    )
    # Add "BSC_" and "LAC_" prefix to LAC column
    GsmAnalysisData.number_of_cell_per_lac["LAC"] = (
        "LAC_" + GsmAnalysisData.number_of_cell_per_lac["LAC"].astype(str)
    )

    GsmAnalysisData.number_of_cell_per_lac["BSC_NAME_ID"] = (
        GsmAnalysisData.number_of_cell_per_lac[["BSC_NAME", "BSC"]]
        .astype(str)
        .apply("_".join, axis=1)
    )

    GsmAnalysisData.number_of_cell_per_lac = GsmAnalysisData.number_of_cell_per_lac[
        ["BSC_NAME_ID", "LAC", "count"]
    ]

    # GsmAnalysisData.number_of_cell_per_lac["BSC"] = (
    #     "BSC_" + GsmAnalysisData.number_of_cell_per_lac["BSC"].astype(str)
    # )
    # GsmAnalysisData.number_of_cell_per_lac = GsmAnalysisData.number_of_cell_per_lac[
    #     ["BSC", "LAC", "count"]
    # ]