File size: 24,230 Bytes
d269960
 
 
 
 
 
 
 
b89c5d7
c98bb3f
 
 
bd3da99
 
d269960
 
 
 
 
5a8534e
d269960
b89c5d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c766f
 
 
b89c5d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d269960
3bd7249
 
 
 
 
 
 
 
 
d269960
 
 
 
 
 
 
 
 
 
 
 
 
81c766f
 
 
d269960
 
 
 
 
 
 
 
 
 
 
3bd7249
 
d269960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd3da99
 
 
c005a67
bd3da99
 
 
c98bb3f
c005a67
 
 
 
 
 
 
d269960
 
c98bb3f
c005a67
 
 
c98bb3f
c005a67
c98bb3f
 
 
d269960
 
 
 
 
 
 
 
c98bb3f
d269960
 
 
 
 
 
 
 
 
 
 
 
 
c005a67
 
d269960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c005a67
d269960
 
 
bd3da99
d269960
 
 
bd3da99
 
d269960
 
bd3da99
d269960
 
 
 
bd3da99
d269960
 
 
 
 
 
 
c005a67
 
 
 
 
 
 
 
 
 
 
 
 
 
d269960
 
 
 
 
c005a67
 
d269960
 
 
 
 
 
 
 
 
 
 
 
c005a67
 
d269960
 
 
 
 
 
 
 
 
 
c98bb3f
c005a67
 
d269960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd3da99
 
d269960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd3da99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c005a67
bd3da99
 
 
 
 
 
 
c005a67
bd3da99
 
 
 
 
 
d269960
 
 
 
 
 
 
bd3da99
 
d269960
 
 
 
 
 
 
 
 
 
 
bd3da99
 
d269960
c98bb3f
 
 
 
 
 
 
 
 
 
 
 
 
d269960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd7249
 
 
 
 
 
 
 
 
 
d22f665
 
 
3bd7249
 
 
 
 
 
 
 
 
d22f665
 
 
 
 
3bd7249
 
 
d22f665
 
 
 
 
3bd7249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89c5d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd7249
b89c5d7
 
3bd7249
 
 
d269960
 
 
 
 
 
 
 
bd3da99
d269960
c98bb3f
3bd7249
d269960
3bd7249
d269960
c98bb3f
d269960
 
 
 
 
bd3da99
 
d269960
 
 
 
 
 
 
 
bd3da99
d269960
c005a67
 
d269960
 
 
 
 
c98bb3f
 
 
d269960
c98bb3f
d269960
 
 
 
 
 
c98bb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d269960
 
bd3da99
d269960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89c5d7
 
d269960
 
 
c005a67
 
 
 
c98bb3f
 
 
c005a67
 
c98bb3f
 
 
 
c005a67
c98bb3f
c005a67
c98bb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89c5d7
 
 
 
 
c98bb3f
3bd7249
 
 
 
c98bb3f
3bd7249
b89c5d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
import numpy as np
import pandas as pd

from queries.process_gsm import combined_gsm_database
from utils.check_sheet_exist import execute_checks_sheets_exist
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.kpi_analysis_utils import (
    GsmAnalysis,
    GsmCapacity,
    analyze_sdcch_call_blocking,
    analyze_tch_abis_fails,
    analyze_tch_call_blocking,
    cell_availability_analysis,
    combine_comments,
    create_daily_date,
    create_dfs_per_kpi,
    create_hourly_date,
    kpi_naming_cleaning,
)
from utils.utils_functions import calculate_distances

GSM_ANALYSIS_COLUMNS = [
    "ID_BTS",
    "site_name",
    "name",
    "BSC",
    "BCF",
    "BTS",
    "code",
    "Region",
    "adminState",
    "frequencyBandInUse",
    "cellId",
    "band",
    "site_config_band",
    "trxRfPower",
    "BCCH",
    "Longitude",
    "Latitude",
    "TRX_TCH",
    "MAL_TCH",
    "amrSegLoadDepTchRateLower",
    "amrSegLoadDepTchRateUpper",
    "btsSpLoadDepTchRateLower",
    "btsSpLoadDepTchRateUpper",
    "amrWbFrCodecModeSet",
    "dedicatedGPRScapacity",
    "defaultGPRScapacity",
    "number_trx_per_cell",
    "number_trx_per_bcf",
    "number_tch_per_cell",
    "number_sd_per_cell",
    "number_bcch_per_cell",
    "number_ccch_per_cell",
    "number_cbc_per_cell",
    "number_total_channels_per_cell",
    "number_signals_per_cell",
    "hf_rate_coef",
    "GPRS",
    "TCH Actual HR%",
    "Offered Traffic BH",
    "Max_Traffic BH",
    "Avg_Traffic BH",
    "TCH UTILIZATION (@Max Traffic)",
    "Tch utilization comments",
    "ErlabngB_value",
    "Target FR CHs",
    "Target HR CHs",
    "Target TCHs",
    "Target TRXs",
    "Number of required TRXs",
    "max_tch_call_blocking_bh",
    "avg_tch_call_blocking_bh",
    "number_of_days_with_tch_blocking_exceeded_bh",
    "tch_call_blocking_bh_comment",
    "max_sdcch_real_blocking_bh",
    "avg_sdcch_real_blocking_bh",
    "number_of_days_with_sdcch_blocking_exceeded_bh",
    "sdcch_real_blocking_bh_comment",
    "Average_cell_availability_bh",
    "number_of_days_exceeding_availability_threshold_bh",
    "availability_comment_bh",
    "max_tch_abis_fail_bh",
    "avg_tch_abis_fail_bh",
    "number_of_days_with_tch_abis_fail_exceeded_bh",
    "tch_abis_fail_bh_comment",
    "Average_cell_availability_daily",
    "number_of_days_exceeding_availability_threshold_daily",
    "availability_comment_daily",
    "max_tch_abis_fail_daily",
    "avg_tch_abis_fail_daily",
    "number_of_days_with_tch_abis_fail_exceeded_daily",
    "tch_abis_fail_daily_comment",
    "BH Congestion status",
    "operational_comment",
    "Final comment",
    "Final comment summary",
]

OPERATIONAL_NEIGHBOURS_COLUMNS = [
    "ID_BTS",
    "name",
    "operational_comment",
    "BH Congestion status",
    "Longitude",
    "Latitude",
]

GSM_COLUMNS = [
    "ID_BTS",
    "site_name",
    "name",
    "BSC",
    "BCF",
    "BTS",
    "code",
    "Region",
    "adminState",
    "frequencyBandInUse",
    "amrSegLoadDepTchRateLower",
    "amrSegLoadDepTchRateUpper",
    "btsSpLoadDepTchRateLower",
    "btsSpLoadDepTchRateUpper",
    "amrWbFrCodecModeSet",
    "dedicatedGPRScapacity",
    "defaultGPRScapacity",
    "cellId",
    "band",
    "site_config_band",
    "trxRfPower",
    "BCCH",
    "number_trx_per_cell",
    "number_trx_per_bcf",
    "TRX_TCH",
    "MAL_TCH",
    "Longitude",
    "Latitude",
]

TRX_COLUMNS = [
    "ID_BTS",
    "number_tch_per_cell",
    "number_sd_per_cell",
    "number_bcch_per_cell",
    "number_ccch_per_cell",
    "number_cbc_per_cell",
    "number_total_channels_per_cell",
    "number_signals_per_cell",
]

KPI_COLUMNS = [
    "date",
    "BTS_name",
    "TCH_availability_ratio",
    "2G_Carried_Traffic",
    "TCH_call_blocking",
    "TCH_ABIS_FAIL_CALL_c001084",
    "SDCCH_real_blocking",
]
BH_COLUMNS_FOR_CAPACITY = [
    "Max_Traffic BH",
    "Avg_Traffic BH",
    "max_tch_call_blocking_bh",
    "avg_tch_call_blocking_bh",
    "number_of_days_with_tch_blocking_exceeded_bh",
    "tch_call_blocking_bh_comment",
    "max_sdcch_real_blocking_bh",
    "avg_sdcch_real_blocking_bh",
    "number_of_days_with_sdcch_blocking_exceeded_bh",
    "sdcch_real_blocking_bh_comment",
    "Average_cell_availability_bh",
    "number_of_days_exceeding_availability_threshold_bh",
    "availability_comment_bh",
    "max_tch_abis_fail_bh",
    "avg_tch_abis_fail_bh",
    "number_of_days_with_tch_abis_fail_exceeded_bh",
    "tch_abis_fail_bh_comment",
]

DAILY_COLUMNS_FOR_CAPACITY = [
    "Average_cell_availability_daily",
    "number_of_days_exceeding_availability_threshold_daily",
    "availability_comment_daily",
    "max_tch_abis_fail_daily",
    "avg_tch_abis_fail_daily",
    "number_of_days_with_tch_abis_fail_exceeded_daily",
    "tch_abis_fail_daily_comment",
]


def bh_traffic_analysis(
    df: pd.DataFrame,
    number_of_kpi_days: int,
) -> pd.DataFrame:

    result_df = df.copy()
    last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
    # last_days_df = last_days_df.fillna(0)

    result_df["Avg_Traffic BH"] = last_days_df.mean(axis=1).round(2)
    result_df["Max_Traffic BH"] = last_days_df.max(axis=1)
    return result_df


def bh_dfs_per_kpi(
    df: pd.DataFrame,
    number_of_kpi_days: int = 7,
    tch_blocking_threshold: int = 0.50,
    sdcch_blocking_threshold: int = 0.50,
    number_of_threshold_days: int = 3,
    tch_abis_fails_threshold: int = 10,
    availability_threshold: int = 95,
) -> pd.DataFrame:
    """
    Create pivoted DataFrames for each KPI and perform analysis.

    Args:
        df: DataFrame containing KPI data
        number_of_kpi_days: Number of days to analyze
        threshold: Utilization threshold percentage for flagging
        number_of_threshold_days: Minimum days above threshold to flag for upgrade

    Returns:
        DataFrame with combined analysis results
    """
    pivoted_kpi_dfs = {}

    pivoted_kpi_dfs = create_dfs_per_kpi(
        df=df,
        pivot_date_column="date",
        pivot_name_column="BTS_name",
        kpi_columns_from=2,
    )

    tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
    sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
    Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
    tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
    tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]

    # ANALISYS

    tch_call_blocking_df = analyze_tch_call_blocking(
        df=tch_call_blocking_df,
        number_of_kpi_days=number_of_kpi_days,
        number_of_threshold_days=number_of_threshold_days,
        tch_blocking_threshold=tch_blocking_threshold,
        analysis_type="BH",
    )

    sdcch_real_blocking_df = analyze_sdcch_call_blocking(
        df=sdcch_real_blocking_df,
        number_of_kpi_days=number_of_kpi_days,
        sdcch_blocking_threshold=sdcch_blocking_threshold,
        number_of_threshold_days=number_of_threshold_days,
        analysis_type="BH",
    )

    Carried_Traffic_df = bh_traffic_analysis(
        df=Carried_Traffic_df,
        number_of_kpi_days=number_of_kpi_days,
    )

    tch_abis_fails_df = analyze_tch_abis_fails(
        df=tch_abis_fails_df,
        number_of_kpi_days=number_of_kpi_days,
        tch_abis_fails_threshold=tch_abis_fails_threshold,
        number_of_threshold_days=number_of_threshold_days,
        analysis_type="BH",
    )
    tch_availability_ratio_df = cell_availability_analysis(
        df=tch_availability_ratio_df,
        days=number_of_kpi_days,
        availability_threshold=availability_threshold,
        analysis_type="BH",
    )

    bh_kpi_df = pd.concat(
        [
            Carried_Traffic_df,
            tch_call_blocking_df,
            sdcch_real_blocking_df,
            tch_availability_ratio_df,
            tch_abis_fails_df,
        ],
        axis=1,
    )
    return bh_kpi_df


def analyse_bh_data(
    bh_report_path: str,
    number_of_kpi_days: int,
    tch_blocking_threshold: int,
    sdcch_blocking_threshold: int,
    number_of_threshold_days: int,
    tch_abis_fails_threshold: int,
    availability_threshold: int,
) -> pd.DataFrame:
    df = pd.read_csv(bh_report_path, delimiter=";")
    df = kpi_naming_cleaning(df)
    df = create_hourly_date(df)
    df = df[KPI_COLUMNS]
    df = bh_dfs_per_kpi(
        df=df,
        number_of_kpi_days=number_of_kpi_days,
        tch_blocking_threshold=tch_blocking_threshold,
        sdcch_blocking_threshold=sdcch_blocking_threshold,
        number_of_threshold_days=number_of_threshold_days,
        tch_abis_fails_threshold=tch_abis_fails_threshold,
        availability_threshold=availability_threshold,
    )

    bh_df_for_capacity = df.copy()
    bh_df_for_capacity = bh_df_for_capacity[BH_COLUMNS_FOR_CAPACITY]
    bh_df_for_capacity = bh_df_for_capacity.reset_index()

    # If columns have multiple levels (MultiIndex), flatten them
    if isinstance(bh_df_for_capacity.columns, pd.MultiIndex):
        bh_df_for_capacity.columns = [
            "_".join([str(el) for el in col if el])
            for col in bh_df_for_capacity.columns.values
        ]
    # bh_df_for_capacity = bh_df_for_capacity.reset_index()

    # rename Bts_name to name
    bh_df_for_capacity = bh_df_for_capacity.rename(columns={"BTS_name": "name"})

    return [bh_df_for_capacity, df]


def daily_dfs_per_kpi(
    df: pd.DataFrame,
    number_of_kpi_days: int = 7,
    availability_threshold: int = 95,
    number_of_threshold_days: int = 3,
    tch_abis_fails_threshold: int = 10,
    sdcch_blocking_threshold: int = 0.5,
    tch_blocking_threshold: int = 0.5,
) -> pd.DataFrame:
    """
    Create pivoted DataFrames for each KPI and perform analysis.

    Args:
        df: DataFrame containing KPI data
        number_of_kpi_days: Number of days to analyze
        threshold: Utilization threshold percentage for flagging
        number_of_threshold_days: Minimum days above threshold to flag for upgrade

    Returns:
        DataFrame with combined analysis results
    """
    pivoted_kpi_dfs = {}

    pivoted_kpi_dfs = create_dfs_per_kpi(
        df=df,
        pivot_date_column="date",
        pivot_name_column="BTS_name",
        kpi_columns_from=2,
    )

    tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
    sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
    Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
    tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
    tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]

    tch_availability_ratio_df = cell_availability_analysis(
        df=tch_availability_ratio_df,
        days=number_of_kpi_days,
        availability_threshold=availability_threshold,
    )
    sdcch_real_blocking_df = analyze_sdcch_call_blocking(
        df=sdcch_real_blocking_df,
        number_of_kpi_days=number_of_kpi_days,
        sdcch_blocking_threshold=sdcch_blocking_threshold,
        number_of_threshold_days=number_of_threshold_days,
        analysis_type="Daily",
    )
    tch_call_blocking_df = analyze_tch_call_blocking(
        df=tch_call_blocking_df,
        number_of_kpi_days=number_of_kpi_days,
        number_of_threshold_days=number_of_threshold_days,
        tch_blocking_threshold=tch_blocking_threshold,
        analysis_type="Daily",
    )
    tch_abis_fails_df = analyze_tch_abis_fails(
        df=tch_abis_fails_df,
        number_of_kpi_days=number_of_kpi_days,
        tch_abis_fails_threshold=tch_abis_fails_threshold,
        number_of_threshold_days=number_of_threshold_days,
        analysis_type="Daily",
    )

    daily_kpi_df = pd.concat(
        [
            tch_availability_ratio_df,
            Carried_Traffic_df,
            tch_call_blocking_df,
            sdcch_real_blocking_df,
            tch_abis_fails_df,
        ],
        axis=1,
    )

    daily_kpi_df = combine_comments(
        daily_kpi_df,
        "availability_comment_daily",
        "tch_abis_fail_daily_comment",
        "sdcch_real_blocking_daily_comment",
        new_column="sdcch_comments",
    )

    daily_kpi_df = combine_comments(
        daily_kpi_df,
        "availability_comment_daily",
        "tch_abis_fail_daily_comment",
        "tch_call_blocking_daily_comment",
        new_column="tch_comments",
    )
    return daily_kpi_df


def analyse_daily_data(
    daily_report_path: str,
    number_of_kpi_days: int,
    tch_abis_fails_threshold: int,
    availability_threshold: int,
    number_of_threshold_days: int,
    sdcch_blocking_threshold: int,
    tch_blocking_threshold: int,
) -> pd.DataFrame:
    df = pd.read_csv(daily_report_path, delimiter=";")
    df = kpi_naming_cleaning(df)
    df = create_daily_date(df)
    df = df[KPI_COLUMNS]
    df = daily_dfs_per_kpi(
        df=df,
        number_of_kpi_days=number_of_kpi_days,
        availability_threshold=availability_threshold,
        tch_abis_fails_threshold=tch_abis_fails_threshold,
        number_of_threshold_days=number_of_threshold_days,
        sdcch_blocking_threshold=sdcch_blocking_threshold,
        tch_blocking_threshold=tch_blocking_threshold,
    )
    daily_df_for_capacity = df.copy()
    daily_df_for_capacity = daily_df_for_capacity[DAILY_COLUMNS_FOR_CAPACITY]
    daily_df_for_capacity = daily_df_for_capacity.reset_index()

    if isinstance(daily_df_for_capacity.columns, pd.MultiIndex):
        daily_df_for_capacity.columns = [
            "_".join([str(el) for el in col if el])
            for col in daily_df_for_capacity.columns.values
        ]
    # Rename "BTS_name" to "name"
    daily_df_for_capacity = daily_df_for_capacity.rename(columns={"BTS_name": "name"})

    return daily_df_for_capacity, df


def get_gsm_databases(dump_path: str) -> pd.DataFrame:

    dfs = combined_gsm_database(dump_path)
    bts_df: pd.DataFrame = dfs[0]
    trx_df: pd.DataFrame = dfs[2]

    # Clean GSM df
    bts_df = bts_df[GSM_COLUMNS]
    trx_df = trx_df[TRX_COLUMNS]

    # Remove duplicate in TRX df
    trx_df = trx_df.drop_duplicates(subset=["ID_BTS"])

    gsm_df = pd.merge(bts_df, trx_df, on="ID_BTS", how="left")

    # add hf_rate_coef
    gsm_df["hf_rate_coef"] = gsm_df["amrSegLoadDepTchRateLower"].map(
        GsmAnalysis.hf_rate_coef
    )
    # Add "GPRS" colomn equal to (dedicatedGPRScapacity * number_tch_per_cell)/100
    gsm_df["GPRS"] = (
        gsm_df["dedicatedGPRScapacity"] * gsm_df["number_tch_per_cell"]
    ) / 100

    # "TCH Actual HR%" equal to "number of TCH" multiplyed by "Coef HF rate"
    gsm_df["TCH Actual HR%"] = gsm_df["number_tch_per_cell"] * gsm_df["hf_rate_coef"]

    # Remove empty rows
    gsm_df = gsm_df.dropna(subset=["TCH Actual HR%"])

    # Get "Offered Traffic BH" by mapping approximate "TCH Actual HR%" to 2G analysis_utility "erlangB" dict
    gsm_df["Offered Traffic BH"] = gsm_df["TCH Actual HR%"].apply(
        lambda x: GsmAnalysis.erlangB_table.get(int(x), 0)
    )

    return gsm_df


def get_operational_neighbours(distance: int) -> pd.DataFrame:

    operational_df: pd.DataFrame = GsmCapacity.operational_neighbours_df
    operational_df = operational_df[
        ["ID_BTS", "name", "operational_comment", "Longitude", "Latitude"]
    ]
    # keep row only if column "operational_comment" is not "Operational is OK"
    operational_df = operational_df[
        operational_df["operational_comment"] != "Operational is OK"
    ]
    operational_df = operational_df[
        operational_df[["Latitude", "Longitude"]].notna().all(axis=1)
    ]

    # Rename all columns in operational_df by adding "Dataset2_" prefix
    operational_df = operational_df.add_prefix("Dataset2_")

    congested_df: pd.DataFrame = GsmCapacity.operational_neighbours_df
    congested_df = congested_df[
        ["ID_BTS", "name", "BH Congestion status", "Longitude", "Latitude"]
    ]

    # Remove rows where "BH Congestion status" is empty or NaN
    congested_df = congested_df[
        congested_df["BH Congestion status"].notna()
        & congested_df["BH Congestion status"].astype(str).str.len().astype(bool)
    ]
    # Remove rows where "BH Congestion status" is "nan, nan"
    congested_df = congested_df[congested_df["BH Congestion status"] != "nan, nan"]

    # Remove rows where Latitude and Longitude are empty
    congested_df = congested_df[
        congested_df[["Latitude", "Longitude"]].notna().all(axis=1)
    ]

    # Rename all columns in congested_df by adding "Dataset1_" prefix
    congested_df = congested_df.add_prefix("Dataset1_")

    distances_dfs = calculate_distances(
        congested_df,
        operational_df,
        "Dataset1_ID_BTS",
        "Dataset1_Latitude",
        "Dataset1_Longitude",
        "Dataset2_ID_BTS",
        "Dataset2_Latitude",
        "Dataset2_Longitude",
    )
    distances_df = distances_dfs[0]
    df1 = distances_df[distances_df["Distance_km"] <= distance]

    # Rename all columns in df1
    df1 = df1.rename(
        columns={
            "Dataset1_ID_BTS": "Source_ID_BTS",
            "Dataset1_name": "Source_name",
            "Dataset1_BH Congestion status": "Source_BH Congestion status",
            "Dataset1_Longitude": "Source_Longitude",
            "Dataset1_Latitude": "Source_Latitude",
            "Dataset2_ID_BTS_Dataset2": "Neighbour_ID_BTS",
            "Dataset2_name_Dataset2": "Neighbour_name",
            "Dataset2_operational_comment_Dataset2": "Neighbour_operational_comment",
            "Dataset2_Longitude_Dataset2": "Neighbour_Longitude",
            "Dataset2_Latitude_Dataset2": "Neighbour_Latitude",
        }
    )

    # Remove rows if Source_name = Neighbour_name
    df1 = df1[df1["Source_name"] != df1["Neighbour_name"]]

    # Reset index
    df1 = df1.reset_index(drop=True)
    return df1


def analyze_gsm_data(
    dump_path: str,
    daily_report_path: str,
    bh_report_path: str,
    number_of_kpi_days: int,
    number_of_threshold_days: int,
    availability_threshold: int,
    tch_abis_fails_threshold: int,
    sdcch_blocking_threshold: float,
    tch_blocking_threshold: float,
    max_traffic_threshold: int,
    operational_neighbours_distance: int,
):
    GsmCapacity.operational_neighbours_df = None

    daily_kpi_dfs: pd.DataFrame = analyse_daily_data(
        daily_report_path=daily_report_path,
        number_of_kpi_days=number_of_kpi_days,
        availability_threshold=availability_threshold,
        tch_abis_fails_threshold=tch_abis_fails_threshold,
        number_of_threshold_days=number_of_threshold_days,
        sdcch_blocking_threshold=sdcch_blocking_threshold,
        tch_blocking_threshold=tch_blocking_threshold,
    )

    gsm_database_df: pd.DataFrame = get_gsm_databases(dump_path)

    bh_kpi_dfs = analyse_bh_data(
        bh_report_path=bh_report_path,
        number_of_kpi_days=number_of_kpi_days,
        tch_blocking_threshold=tch_blocking_threshold,
        sdcch_blocking_threshold=sdcch_blocking_threshold,
        number_of_threshold_days=number_of_threshold_days,
        tch_abis_fails_threshold=tch_abis_fails_threshold,
        availability_threshold=availability_threshold,
    )

    bh_kpi_df = bh_kpi_dfs[0]
    bh_kpi_full_df = bh_kpi_dfs[1]

    daily_kpi_df = daily_kpi_dfs[0]
    daily_kpi_full_df = daily_kpi_dfs[1]

    gsm_analysis_df = gsm_database_df.merge(bh_kpi_df, on="name", how="left")
    gsm_analysis_df = gsm_analysis_df.merge(daily_kpi_df, on="name", how="left")

    # "TCH UTILIZATION (@Max Traffic)" equal to "(Max_Trafic" divided by "Offered Traffic BH)*100"
    gsm_analysis_df["TCH UTILIZATION (@Max Traffic)"] = (
        gsm_analysis_df["Max_Traffic BH"] / gsm_analysis_df["Offered Traffic BH"]
    ) * 100

    # Add column "Tch utilization comments" : if "TCH UTILIZATION (@Max Traffic)" exceeded it's threshold then "Tch utilization exceeded threshold else None
    gsm_analysis_df["Tch utilization comments"] = np.where(
        gsm_analysis_df["TCH UTILIZATION (@Max Traffic)"] > max_traffic_threshold,
        "Tch utilization exceeded threshold",
        None,
    )
    # Add "BH Congestion status" : concatenate "Tch utilization comments" + "tch_call_blocking_bh_comment" + "sdcch_real_blocking_bh_comment"
    gsm_analysis_df = combine_comments(
        gsm_analysis_df,
        "Tch utilization comments",
        "tch_call_blocking_bh_comment",
        "sdcch_real_blocking_bh_comment",
        new_column="BH Congestion status",
    )

    # Add "ERLANGB value" =MAX TRAFFIC/(1-(MAX TCH call blocking/200))
    gsm_analysis_df["ErlabngB_value"] = gsm_analysis_df["Max_Traffic BH"] / (
        1 - (gsm_analysis_df["max_tch_call_blocking_bh"] / 200)
    )

    # - Get "Target FR CHs" by mapping "ERLANG value" to 2G analysis_utility "erlangB" dict
    gsm_analysis_df["Target FR CHs"] = gsm_analysis_df["ErlabngB_value"].apply(
        lambda x: GsmAnalysis.erlangB_table.get(int(x) if pd.notnull(x) else 0, 0)
    )

    # "Target HR CHs" equal to  "Target FR CHs" * 2
    gsm_analysis_df["Target HR CHs"] = gsm_analysis_df["Target FR CHs"] * 2

    # - Target TCHs equal to Target HR CHs + Signal + GPRS + SDCCH
    gsm_analysis_df["Target TCHs"] = (
        gsm_analysis_df["Target HR CHs"]
        + gsm_analysis_df["number_signals_per_cell"]
        + gsm_analysis_df["GPRS"]
        + gsm_analysis_df["number_sd_per_cell"]
    )
    # "Target TRXs" equal to roundup(Target TCHs/8)
    gsm_analysis_df["Target TRXs"] = np.ceil(
        gsm_analysis_df["Target TCHs"] / 8
    )  # df["Target TCHs"] / 8

    # "Number of required TRXs" equal to difference between "Target TRXs" and "number_trx_per_cell"
    gsm_analysis_df["Number of required TRXs"] = (
        gsm_analysis_df["Target TRXs"] - gsm_analysis_df["number_trx_per_cell"]
    )

    # if "availability_comment_daily" equal to "Down Site" then "Down Site"
    # if "availability_comment_daily" is not "Availability OK" and  "tch_abis_fail_daily_comment" equal to "tch abis fail exceeded threshold" then "Availability and TX issues"
    # if "availability_comment_daily" is not "Availability OK" and  "tch_abis_fail_daily_comment" is empty then "Availability issues"
    # if "availability_comment_daily" is "Availability OK" and  "tch_abis_fail_daily_comment" equal to "tch abis fail exceeded threshold" then "TX issues"
    # Else "Operational is OK"
    gsm_analysis_df["operational_comment"] = np.select(
        [
            gsm_analysis_df["availability_comment_daily"] == "Down Site",  # 1
            (gsm_analysis_df["availability_comment_daily"] != "Availability OK")
            & (
                gsm_analysis_df["tch_abis_fail_daily_comment"]
                == "tch abis fail exceeded threshold"
            ),  # 2
            (gsm_analysis_df["availability_comment_daily"] != "Availability OK")
            & pd.isna(gsm_analysis_df["tch_abis_fail_daily_comment"]),  # 3
            (gsm_analysis_df["availability_comment_daily"] == "Availability OK")
            & (
                gsm_analysis_df["tch_abis_fail_daily_comment"]
                == "tch abis fail exceeded threshold"
            ),  # 4
        ],
        [
            "Down Site",  # 1
            "Availability and TX issues",  # 2
            "Availability issues",  # 3
            "TX issues",  # 4
        ],
        default="Operational is OK",
    )

    # Add "Final comment" with "BH Congestion status" + "operational_comment"
    gsm_analysis_df = combine_comments(
        gsm_analysis_df,
        "BH Congestion status",
        "operational_comment",
        new_column="Final comment",
    )
    # Map the final comment using final_comment_mapping
    gsm_analysis_df["Final comment summary"] = gsm_analysis_df["Final comment"].map(
        GsmCapacity.final_comment_mapping
    )
    gsm_analysis_df = gsm_analysis_df[GSM_ANALYSIS_COLUMNS]

    GsmCapacity.operational_neighbours_df = gsm_analysis_df[
        OPERATIONAL_NEIGHBOURS_COLUMNS
    ]
    distance_df = get_operational_neighbours(operational_neighbours_distance)

    return [gsm_analysis_df, bh_kpi_full_df, daily_kpi_full_df, distance_df]
    # return [gsm_analysis_df, bh_kpi_full_df, daily_kpi_full_df]