File size: 22,333 Bytes
b29ed17 c98bb3f a64569a b89c5d7 bd3da99 c98bb3f bd3da99 b29ed17 a64569a b29ed17 a64569a b29ed17 a64569a b29ed17 a64569a bd3da99 a64569a bd3da99 c005a67 bd3da99 c005a67 bd3da99 c005a67 bd3da99 c005a67 bd3da99 c98bb3f c005a67 c98bb3f 027f03b d1de5db 027f03b d1de5db 027f03b d1de5db 027f03b d1de5db 027f03b d1de5db 027f03b b29ed17 4d0848d b29ed17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
import re
import numpy as np
import pandas as pd
class GsmAnalysis:
hf_rate_coef = {
10: 1.1,
20: 1.2,
40: 1.4,
60: 1.6,
70: 1.7,
80: 1.8,
99: 2.0,
100: 1.4,
}
erlangB_table = {
1: 0.0204,
2: 0.2234,
3: 0.6022,
4: 1.092,
5: 1.657,
6: 2.276,
7: 2.935,
8: 3.627,
9: 4.345,
10: 5.084,
11: 5.841,
12: 6.614,
13: 7.401,
14: 8.2,
15: 9.009,
16: 9.828,
17: 10.66,
18: 11.49,
19: 12.33,
20: 13.18,
21: 14.04,
22: 14.9,
23: 15.76,
24: 16.63,
25: 17.5,
26: 18.38,
27: 19.26,
28: 20.15,
29: 21.04,
30: 21.93,
31: 22.83,
32: 23.72,
33: 24.63,
34: 25.53,
35: 26.43,
36: 27.34,
37: 28.25,
38: 29.17,
39: 30.08,
40: 31,
41: 31.91,
42: 32.84,
43: 33.76,
44: 34.68,
45: 35.61,
46: 36.53,
47: 37.46,
48: 38.39,
49: 39.32,
50: 40.25,
51: 41.19,
52: 42.12,
53: 43.06,
54: 44,
55: 44.93,
56: 45.88,
57: 46.81,
58: 47.75,
59: 48.7,
60: 49.64,
61: 50.59,
62: 51.53,
63: 52.48,
64: 53.43,
65: 54.38,
66: 55.32,
67: 56.27,
68: 57.22,
69: 58.18,
70: 59.13,
71: 60.08,
72: 61.04,
73: 61.99,
74: 62.94,
75: 63.9,
76: 64.86,
77: 65.81,
78: 66.77,
79: 67.73,
80: 68.69,
81: 69.64,
82: 70.61,
83: 71.57,
84: 72.53,
85: 73.49,
86: 74.45,
87: 75.41,
88: 76.38,
89: 77.34,
90: 78.3,
91: 79.27,
92: 80.23,
93: 81.2,
94: 82.16,
95: 83.13,
96: 84.09,
97: 85.06,
98: 86.03,
99: 87,
100: 87.97,
101: 88.94,
102: 89.91,
103: 90.88,
104: 91.85,
105: 92.82,
106: 93.79,
107: 94.76,
108: 95.73,
109: 96.71,
110: 97.68,
111: 98.65,
112: 99.63,
113: 100.6,
114: 101.57,
115: 102.54,
116: 103.52,
117: 104.49,
118: 105.47,
119: 106.44,
120: 107.42,
121: 108.4,
122: 109.37,
123: 110.35,
124: 111.32,
125: 112.3,
126: 113.28,
127: 114.25,
128: 115.23,
129: 116.21,
130: 117.19,
131: 118.17,
132: 119.15,
133: 120.12,
134: 121.1,
135: 122.08,
136: 123.07,
137: 124.04,
138: 125.02,
139: 126.01341,
140: 127.00918,
141: 127.96752,
142: 128.98152,
143: 129.92152,
144: 130.88534,
145: 131.96461,
146: 132.89897,
147: 133.86373,
148: 134.82569,
149: 135.76295,
150: 136.82988,
151: 137.79,
152: 138.77,
153: 139.75,
154: 140.74,
155: 141.72,
156: 142.7,
157: 143.69,
158: 144.67,
159: 145.66,
160: 146.64,
161: 147.63,
162: 148.61,
163: 149.6,
164: 150.58,
165: 151.57,
166: 152.55,
167: 153.54,
168: 154.53,
169: 155.51,
170: 156.5,
171: 157.48,
172: 158.47,
173: 159.46,
174: 160.44,
175: 161.43,
176: 162.42,
177: 163.41,
178: 164.39,
179: 165.38,
180: 166.37,
181: 167.36,
182: 168.35,
183: 169.33,
184: 170.32,
185: 171.31,
186: 172.3,
187: 173.29,
188: 174.28,
189: 175.27,
190: 176.26,
191: 177.25,
192: 178.24,
193: 179.23,
194: 180.22,
195: 181.21,
196: 182.2,
197: 183.19,
198: 184.18,
199: 185.17,
200: 186.16,
}
class GsmCapacity:
final_results = None
operational_neighbours_df = None
final_comment_mapping = {
"Availability and TX issues": "Operational issues with no congestion",
"Availability issues": "Operational issues with no congestion",
"TX issues": "Operational issues with no congestion",
"Operational is OK": "Operational is OK with no congestion",
"Tch utilization exceeded threshold, Availability and TX issues": "High utilization with Operational issues",
"Tch utilization exceeded threshold, Availability issues": "High utilization with Operational issues",
"Tch utilization exceeded threshold, TX issues": "High utilization with Operational issues",
"Tch utilization exceeded threshold, SDCCH blocking exceeded threshold, Operational is OK": "High Utilization with Congestion without Operational issues",
"Tch utilization exceeded threshold, TCH blocking exceeded threshold, Operational is OK": "High Utilization with Congestion without Operational issues",
"Tch utilization exceeded threshold, TCH blocking exceeded threshold, SDCCH blocking exceeded threshold, Operational is OK": "High Utilization with Congestion without Operational issues",
"Tch utilization exceeded threshold, TCH blocking exceeded threshold, SDCCH blocking exceeded threshold, TX issues": "High Utilization with Congestion without Operational issues",
"Tch utilization exceeded threshold, SDCCH blocking exceeded threshold, Availability and TX issues": "High utilization with Congestion and operational issues",
"Tch utilization exceeded threshold, SDCCH blocking exceeded threshold, TX issues": "High utilization with Congestion and operational issues",
"Tch utilization exceeded threshold, TCH blocking exceeded threshold, Availability and TX issues": "High utilization with Congestion and operational issues",
"Tch utilization exceeded threshold, TCH blocking exceeded threshold, Availability issues": "High utilization with Congestion and operational issues",
"Tch utilization exceeded threshold, TCH blocking exceeded threshold, SDCCH blocking exceeded threshold, Availability and TX issues": "High utilization with Congestion and operational issues",
"Tch utilization exceeded threshold, TCH blocking exceeded threshold, SDCCH blocking exceeded threshold, Availability issues": "High utilization with Congestion and operational issues",
"Tch utilization exceeded threshold, TCH blocking exceeded threshold, TX issues": "High utilization with Congestion and operational issues",
"Down Site": "Down Cell",
"SDCCH blocking exceeded threshold, Operational is OK": "Congestion without Operational issues",
"TCH blocking exceeded threshold, Operational is OK": "Congestion without Operational issues",
"TCH blocking exceeded threshold, SDCCH blocking exceeded threshold, Operational is OK": "Congestion without Operational issues",
"Tch utilization exceeded threshold, Operational is OK": "High utilization without Congestion and Operational issues",
"SDCCH blocking exceeded threshold, Availability and TX issues": "Congestion with Operational issues",
"SDCCH blocking exceeded threshold, Availability issues": "Congestion with Operational issues",
"SDCCH blocking exceeded threshold, TX issues": "Congestion with Operational issues",
"TCH blocking exceeded threshold, Availability and TX issues": "Congestion with Operational issues",
"TCH blocking exceeded threshold, Availability issues": "Congestion with Operational issues",
"TCH blocking exceeded threshold, SDCCH blocking exceeded threshold, Availability and TX issues": "Congestion with Operational issues",
"TCH blocking exceeded threshold, SDCCH blocking exceeded threshold, Availability issues": "Congestion with Operational issues",
"TCH blocking exceeded threshold, SDCCH blocking exceeded threshold, TX issues": "Congestion with Operational issues",
"TCH blocking exceeded threshold, TX issues": "Congestion with Operational issues",
}
def combine_comments(df: pd.DataFrame, *columns: str, new_column: str) -> pd.DataFrame:
"""
Combine comments from multiple columns into one column.
Args:
df: DataFrame containing comment columns
*columns: Variable number of column names containing comments
new_column: Name for the new combined comments column
Returns:
DataFrame with a new column containing combined comments
"""
result_df = df.copy()
result_df[new_column] = result_df[list(columns)].apply(
lambda row: ", ".join([str(x) for x in row if x]), axis=1
)
# Trim all trailing commas
result_df[new_column] = result_df[new_column].str.replace(
r"^[,\s]+|[,\s]+$", "", regex=True
)
# Replace multiple commas with a single comma
result_df[new_column] = result_df[new_column].str.replace(
r",\s*,", ", ", regex=True
)
return result_df
def summarize_fails_comments(comment):
if not comment or pd.isna(comment) or comment.strip() == "":
return ""
# Extract all `rrc_fail_xxx` fields
matches = re.findall(r"rrc_fail_([a-z_]+)", comment)
if not matches:
return ""
# Remove duplicates, sort alphabetically
unique_sorted = sorted(set(matches))
# Combine and add 'fails'
return ", ".join(unique_sorted) + " fails"
def kpi_naming_cleaning(df: pd.DataFrame) -> pd.DataFrame:
"""
Clean KPI column names by replacing special characters and standardizing format.
Args:
df: DataFrame with KPI column names to clean
Returns:
DataFrame with cleaned column names
"""
name_df: pd.DataFrame = df.copy()
name_df.columns = name_df.columns.str.replace("[ /(),-.']", "_", regex=True)
name_df.columns = name_df.columns.str.replace("___", "_")
name_df.columns = name_df.columns.str.replace("__", "_")
name_df.columns = name_df.columns.str.replace("%", "perc")
name_df.columns = name_df.columns.str.rstrip("_")
return name_df
def create_daily_date(df: pd.DataFrame) -> pd.DataFrame:
"""
Create a daily date column from PERIOD_START_TIME and drop unnecessary columns.
Args:
df: DataFrame containing PERIOD_START_TIME column
Returns:
DataFrame with new date column and unnecessary columns removed
"""
date_df: pd.DataFrame = df.copy()
date_df[["mois", "jour", "annee"]] = date_df["PERIOD_START_TIME"].str.split(
".", expand=True
)
date_df["date"] = date_df["annee"] + "-" + date_df["mois"] + "-" + date_df["jour"]
# Remove unnecessary columns
date_df = date_df.drop(["annee", "mois", "jour", "PERIOD_START_TIME"], axis=1)
return date_df
def create_hourly_date(df: pd.DataFrame) -> pd.DataFrame:
date_df: pd.DataFrame = df
date_df[["date_t", "hour"]] = date_df["PERIOD_START_TIME"].str.split(
" ", expand=True
)
date_df[["mois", "jour", "annee"]] = date_df["date_t"].str.split(".", expand=True)
date_df["datetime"] = (
date_df["annee"]
+ "-"
+ date_df["mois"]
+ "-"
+ date_df["jour"]
+ " "
+ date_df["hour"]
)
date_df["date"] = date_df["annee"] + "-" + date_df["mois"] + "-" + date_df["jour"]
# Remove columns 'année' and 'mois'
date_df = date_df.drop(
["annee", "mois", "jour", "date_t", "PERIOD_START_TIME"], axis=1
)
return date_df
def create_dfs_per_kpi(
df: pd.DataFrame = None,
pivot_date_column: str = "date",
pivot_name_column: str = "BTS_name",
kpi_columns_from: int = None,
) -> pd.DataFrame:
"""
Create pivoted DataFrames for each KPI and perform analysis.
Args:
df: DataFrame containing KPI data
Returns:
DataFrame with combined analysis results
"""
kpi_columns = df.columns[kpi_columns_from:]
pivoted_kpi_dfs = {}
# Loop through each KPI and create pivoted DataFrames
for kpi in kpi_columns:
temp_df = df[[pivot_date_column, pivot_name_column, kpi]].copy()
# remove duplicates
temp_df = temp_df.drop_duplicates(
subset=[pivot_name_column, pivot_date_column], keep="first"
)
temp_df = temp_df.reset_index()
# Pivot the dataframe
pivot_df = temp_df.pivot(
index=pivot_name_column, columns=pivot_date_column, values=kpi
)
pivot_df.columns = pd.MultiIndex.from_product([[kpi], pivot_df.columns])
pivot_df.columns.names = ["KPI", "Date"]
# Store in dictionary with KPI name as key
pivoted_kpi_dfs[kpi] = pivot_df
return pivoted_kpi_dfs
def cell_availability_analysis(
df: pd.DataFrame,
days: int = 7,
availability_threshold: int = 95,
analysis_type: str = "daily",
) -> pd.DataFrame:
"""
Analyze cell availability and categorize sites based on availability metrics.
Args:
df: DataFrame containing cell availability data
days: Number of days to analyze
Returns:
DataFrame with availability analysis and site status comments
"""
result_df: pd.DataFrame = df.copy().fillna(0)
last_days_df: pd.DataFrame = result_df.iloc[:, -days:]
result_df[f"Average_cell_availability_{analysis_type.lower()}"] = last_days_df.mean(
axis=1
).round(2)
# Count the number of days above threshold
result_df[
f"number_of_days_exceeding_availability_threshold_{analysis_type.lower()}"
] = last_days_df.apply(
lambda row: sum(1 for x in row if x <= availability_threshold), axis=1
)
# Categorize sites based on availability
def categorize_availability(x: float) -> str:
if x == 0 or pd.isnull(x):
return "Down Site"
elif 0 < x <= 70:
return "critical instability"
elif 70 < x <= availability_threshold:
return "instability"
else:
return "Availability OK"
result_df[f"availability_comment_{analysis_type.lower()}"] = result_df[
f"Average_cell_availability_{analysis_type.lower()}"
].apply(categorize_availability)
return result_df
def analyze_tch_abis_fails(
df: pd.DataFrame,
number_of_kpi_days: int,
analysis_type: str,
number_of_threshold_days: int,
tch_abis_fails_threshold: int,
) -> pd.DataFrame:
result_df: pd.DataFrame = df.copy()
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df[f"avg_tch_abis_fail_{analysis_type.lower()}"] = last_days_df.mean(
axis=1
).round(2)
result_df[f"max_tch_abis_fail_{analysis_type.lower()}"] = last_days_df.max(axis=1)
# Count the number of days above threshold
result_df[f"number_of_days_with_tch_abis_fail_exceeded_{analysis_type.lower()}"] = (
last_days_df.apply(
lambda row: sum(1 for x in row if x >= tch_abis_fails_threshold), axis=1
)
)
# Add the daily_tch_comment : if number_of_days_with_tch_abis_fail_exceeded_daily is >= number_of_threshold_days : tch abis fail exceeded threshold , else : None
result_df[f"tch_abis_fail_{analysis_type.lower()}_comment"] = np.where(
result_df[f"number_of_days_with_tch_abis_fail_exceeded_{analysis_type.lower()}"]
>= number_of_threshold_days,
"tch abis fail exceeded threshold",
None,
)
return result_df
def analyze_tch_call_blocking(
df: pd.DataFrame,
number_of_kpi_days: int,
analysis_type: str,
number_of_threshold_days: int,
tch_blocking_threshold: int,
) -> pd.DataFrame:
result_df = df.copy()
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df[f"avg_tch_call_blocking_{analysis_type.lower()}"] = last_days_df.mean(
axis=1
).round(2)
result_df[f"max_tch_call_blocking_{analysis_type.lower()}"] = last_days_df.max(
axis=1
)
# Count the number of days above threshold
result_df[f"number_of_days_with_tch_blocking_exceeded_{analysis_type.lower()}"] = (
last_days_df.apply(
lambda row: sum(1 for x in row if x >= tch_blocking_threshold), axis=1
)
)
# Add the daily_tch_comment : if number_of_days_with_tch_blocking_exceeded_daily is >= number_of_threshold_days : tch blocking exceeded threshold , else : None
result_df[f"tch_call_blocking_{analysis_type.lower()}_comment"] = np.where(
result_df[f"number_of_days_with_tch_blocking_exceeded_{analysis_type.lower()}"]
>= number_of_threshold_days,
"TCH blocking exceeded threshold",
None,
)
return result_df
def analyze_sdcch_call_blocking(
df: pd.DataFrame,
number_of_kpi_days: int,
sdcch_blocking_threshold: int,
analysis_type: str,
number_of_threshold_days: int,
) -> pd.DataFrame:
result_df = df.copy()
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df[f"avg_sdcch_real_blocking_{analysis_type.lower()}"] = last_days_df.mean(
axis=1
).round(2)
result_df[f"max_sdcch_real_blocking_{analysis_type.lower()}"] = last_days_df.max(
axis=1
)
# Count the number of days above threshold
result_df[
f"number_of_days_with_sdcch_blocking_exceeded_{analysis_type.lower()}"
] = last_days_df.apply(
lambda row: sum(1 for x in row if x >= sdcch_blocking_threshold), axis=1
)
# add daily_sdcch_comment : if number_of_days_with_sdcch_blocking_exceeded_daily is >= number_of_threshold_days : sdcch blocking exceeded threshold , else : None
result_df[f"sdcch_real_blocking_{analysis_type.lower()}_comment"] = np.where(
result_df[
f"number_of_days_with_sdcch_blocking_exceeded_{analysis_type.lower()}"
]
>= number_of_threshold_days,
"SDCCH blocking exceeded threshold",
None,
)
return result_df
class LteCapacity:
final_results = None
# Next band mapping
next_band_mapping = {
"L1800": "L800",
"L800": "L1800",
"L1800/L800": "L2600",
"L1800/L2300/L800": "L2600",
"L2300/L800": "L2600",
"L1800/L2600/L800": "New site/Dual Beam",
"L1800/L2300/L2600/L800": "New site/Dual Beam",
"L2300": "FDD H// colocated site",
}
def analyze_prb_usage(
df: pd.DataFrame,
number_of_kpi_days: int,
prb_usage_threshold: int,
analysis_type: str,
number_of_threshold_days: int,
suffix: str = "",
) -> pd.DataFrame:
result_df = df.copy()
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df[f"avg_prb_usage_{analysis_type.lower()}{suffix}"] = last_days_df.mean(
axis=1
).round(2)
result_df[f"max_prb_usage_{analysis_type.lower()}{suffix}"] = last_days_df.max(
axis=1
)
# Count the number of days above threshold
result_df[
f"number_of_days_with_prb_usage_exceeded_{analysis_type.lower()}{suffix}"
] = last_days_df.apply(
lambda row: sum(1 for x in row if x >= prb_usage_threshold), axis=1
)
# Add the daily_prb_comment : if number_of_days_with_prb_usage_exceeded_daily is >= number_of_threshold_days : prb usage exceeded threshold , else : None
result_df[f"prb_usage_{analysis_type.lower()}{suffix}_comment"] = np.where(
result_df[
f"number_of_days_with_prb_usage_exceeded_{analysis_type.lower()}{suffix}"
]
>= number_of_threshold_days,
"PRB usage exceeded threshold",
None,
)
return result_df
def analyze_fails_kpi(
df: pd.DataFrame,
number_of_kpi_days: int,
number_of_threshold_days: int,
kpi_threshold: int,
kpi_column_name: str,
) -> pd.DataFrame:
result_df: pd.DataFrame = df.copy()
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df[f"avg_{kpi_column_name}"] = last_days_df.mean(axis=1).round(2)
result_df[f"max_{kpi_column_name}"] = last_days_df.max(axis=1)
# Count the number of days above threshold
result_df[f"number_of_days_with_{kpi_column_name}_exceeded"] = last_days_df.apply(
lambda row: sum(1 for x in row if x >= kpi_threshold), axis=1
)
# Add the {kpi_column_name}_comment : if number_of_days_with_{kpi_column_name}_exceeded_daily is >= number_of_threshold_days : {kpi_column_name} exceeded threshold , else : None
result_df[f"{kpi_column_name}_comment"] = np.where(
result_df[f"number_of_days_with_{kpi_column_name}_exceeded"]
>= number_of_threshold_days,
f"{kpi_column_name} exceeded threshold",
None,
)
return result_df
def analyze_lcg_utilization(
df: pd.DataFrame,
number_of_kpi_days: int,
number_of_threshold_days: int,
kpi_threshold: int,
kpi_column_name: str,
) -> pd.DataFrame:
result_df: pd.DataFrame = df.copy()
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df[f"avg_{kpi_column_name}"] = last_days_df.mean(axis=1).round(2)
result_df[f"max_{kpi_column_name}"] = last_days_df.max(axis=1)
# Count the number of days above threshold
result_df[f"number_of_days_with_{kpi_column_name}_exceeded"] = last_days_df.apply(
lambda row: sum(1 for x in row if x >= kpi_threshold), axis=1
)
# Add the {kpi_column_name}_comment : if number_of_days_with_{kpi_column_name}_exceeded_daily is >= number_of_threshold_days : {kpi_column_name} exceeded threshold , else : None
result_df[f"{kpi_column_name}_comment"] = np.where(
result_df[f"number_of_days_with_{kpi_column_name}_exceeded"]
>= number_of_threshold_days,
f"{kpi_column_name} exceeded threshold",
None,
)
return result_df
|