Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import torch.nn as nn | |
from torch.nn import init | |
from torch.optim import lr_scheduler | |
class BaseModel(nn.Module): | |
def __init__(self, opt): | |
super(BaseModel, self).__init__() | |
self.opt = opt | |
self.total_steps = 0 | |
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) | |
self.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu') | |
def save_networks(self, save_filename): | |
save_path = os.path.join(self.save_dir, save_filename) | |
# serialize model and optimizer to dict | |
state_dict = { | |
'model': self.model.state_dict(), | |
'optimizer' : self.optimizer.state_dict(), | |
'total_steps' : self.total_steps, | |
} | |
torch.save(state_dict, save_path) | |
def eval(self): | |
self.model.eval() | |
def test(self): | |
with torch.no_grad(): | |
self.forward() | |
def init_weights(net, init_type='normal', gain=0.02): | |
def init_func(m): | |
classname = m.__class__.__name__ | |
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): | |
if init_type == 'normal': | |
init.normal_(m.weight.data, 0.0, gain) | |
elif init_type == 'xavier': | |
init.xavier_normal_(m.weight.data, gain=gain) | |
elif init_type == 'kaiming': | |
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') | |
elif init_type == 'orthogonal': | |
init.orthogonal_(m.weight.data, gain=gain) | |
else: | |
raise NotImplementedError('initialization method [%s] is not implemented' % init_type) | |
if hasattr(m, 'bias') and m.bias is not None: | |
init.constant_(m.bias.data, 0.0) | |
elif classname.find('BatchNorm2d') != -1: | |
init.normal_(m.weight.data, 1.0, gain) | |
init.constant_(m.bias.data, 0.0) | |
print('initialize network with %s' % init_type) | |
net.apply(init_func) | |