File size: 8,015 Bytes
1a40686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b850f8
 
1a40686
 
 
 
 
7b850f8
 
 
 
1a40686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b850f8
1a40686
 
7b850f8
1a40686
 
 
7b850f8
1a40686
 
 
 
 
7b850f8
1a40686
7b850f8
 
 
1a40686
 
 
 
 
 
 
 
 
 
b3f85f1
1a40686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# import os
# import logging
# from dotenv import load_dotenv
# import streamlit as st
# from PyPDF2 import PdfReader
# from langchain.text_splitter import CharacterTextSplitter
# # from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain_cohere import CohereEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# # from langchain.llms import Ollama
# from langchain_groq import ChatGroq

# # Load environment variables
# load_dotenv()

# # Set up logging
# logging.basicConfig(
#     level=logging.INFO,
#     format='%(asctime)s - %(levelname)s - %(message)s'
# )

# # Function to extract text from PDF files
# def get_pdf_text(pdf_docs):
#     text = ""
#     for pdf in pdf_docs:
#         pdf_reader = PdfReader(pdf)
#         for page in pdf_reader.pages:
#             text += page.extract_text()
#     return text

# # Function to split the extracted text into chunks
# def get_text_chunks(text):
#     text_splitter = CharacterTextSplitter(
#         separator="\n",
#         chunk_size=1000,
#         chunk_overlap=200,
#         length_function=len
#     )
#     chunks = text_splitter.split_text(text)
#     return chunks

# # Function to create a FAISS vectorstore
# # def get_vectorstore(text_chunks):
# #     embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# #     vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# #     return vectorstore

# def get_vectorstore(text_chunks):
#     cohere_api_key = os.getenv("COHERE_API_KEY")
#     embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
#     vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
#     return vectorstore

# # Function to set up the conversational retrieval chain
# def get_conversation_chain(vectorstore):
#     try:
#         # llm = Ollama(model="llama3.2:1b")
#         llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0.5)
#         memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
        
#         conversation_chain = ConversationalRetrievalChain.from_llm(
#             llm=llm,
#             retriever=vectorstore.as_retriever(),
#             memory=memory
#         )
        
#         logging.info("Conversation chain created successfully.")
#         return conversation_chain
#     except Exception as e:
#         logging.error(f"Error creating conversation chain: {e}")
#         st.error("An error occurred while setting up the conversation chain.")

# # Handle user input
# def handle_userinput(user_question):
#     if st.session_state.conversation is not None:
#         response = st.session_state.conversation({'question': user_question})
#         st.session_state.chat_history = response['chat_history']

#         for i, message in enumerate(st.session_state.chat_history):
#             if i % 2 == 0:
#                 st.write(f"*User:* {message.content}")
#             else:
#                 st.write(f"*Bot:* {message.content}")
#     else:
#         st.warning("Please process the documents first.")

# # Main function to run the Streamlit app
# def main():
#     load_dotenv()
#     st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")

#     if "conversation" not in st.session_state:
#         st.session_state.conversation = None
#     if "chat_history" not in st.session_state:
#         st.session_state.chat_history = None

#     st.header("Chat with multiple PDFs :books:")
#     user_question = st.text_input("Ask a question about your documents:")
#     if user_question:
#         handle_userinput(user_question)

#     with st.sidebar:
#         st.subheader("Your documents")
#         pdf_docs = st.file_uploader(
#             "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
#         )
#         if st.button("Process"):
#             with st.spinner("Processing..."):
#                 raw_text = get_pdf_text(pdf_docs)
#                 text_chunks = get_text_chunks(raw_text)
#                 vectorstore = get_vectorstore(text_chunks)
#                 st.session_state.conversation = get_conversation_chain(vectorstore)

# if __name__ == '__main__':
#     main()







import streamlit as st
import os
from dotenv import load_dotenv
import PyPDF2
import requests
import cohere
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_cohere import CohereEmbeddings

# Load environment variables
load_dotenv()
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
COHERE_API_KEY = os.getenv("COHERE_API_KEY")

# Initialize Cohere client
co = cohere.Client(COHERE_API_KEY)

# Configure Streamlit
st.set_page_config(page_title="RAG Chatbot with Gemini & Cohere")
st.title("🤖 Multi-Model RAG Chatbot")

# Initialize session state
if "messages" not in st.session_state:
    st.session_state.messages = []
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None

# File upload and processing
uploaded_file = st.file_uploader("Upload a PDF document", type="pdf")

if uploaded_file and not st.session_state.vector_store:
    # Process PDF
    pdf_reader = PyPDF2.PdfReader(uploaded_file)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()

    # Split text
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200
    )
    chunks = text_splitter.split_text(text)

    # Create embeddings and vector store
    embeddings = CohereEmbeddings(
        cohere_api_key=COHERE_API_KEY,
        model="embed-english-v3.0",
        user_agent="rag-chatbot-v1"
    )
    st.session_state.vector_store = FAISS.from_texts(
        texts=chunks,
        embedding=embeddings
    )

# Display chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Query expansion function
def expand_query(query):
    prompt = f"""Generate 3 query variations that help answer: {query}
    Format as numbered bullet points:"""

    response = co.generate(
        prompt=prompt,
        max_tokens=100,
        temperature=0.7
    )
    expanded_queries = [query] + [q.split(". ")[1] for q in response.generations[0].text.split("\n") if q]
    return expanded_queries

# Gemini API call
def generate_with_gemini(context, query):
    url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key={GEMINI_API_KEY}"

    system_prompt = f"""You're an expert assistant. Use this context to answer:
    {context}

    Apply Chain of Abstraction and Grounding (CAG):
    1. Identify key concepts
    2. Create abstract relationships
    3. Ground in specific examples
    4. Synthesize final answer"""

    headers = {"Content-Type": "application/json"}
    data = {
        "contents": [{
            "parts": [{
                "text": f"{system_prompt}\n\nQuestion: {query}"
            }]
        }]
    }

    response = requests.post(url, json=data, headers=headers)
    return response.json()["candidates"][0]["content"]["parts"][0]["text"]

# Chat input
if prompt := st.chat_input("Ask about the document"):
    st.session_state.messages.append({"role": "user", "content": prompt})

    with st.chat_message("user"):
        st.markdown(prompt)

    # Query expansion
    expanded_queries = expand_query(prompt)

    # Retrieve documents
    docs = []
    for query in expanded_queries:
        docs.extend(st.session_state.vector_store.similarity_search(query, k=2))

    # Generate response
    context = "\n\n".join([doc.page_content for doc in docs])
    response = generate_with_gemini(context, prompt)

    with st.chat_message("assistant"):
        st.markdown(response)

    st.session_state.messages.append({"role": "assistant", "content": response})