File size: 8,015 Bytes
1a40686 7b850f8 1a40686 7b850f8 1a40686 7b850f8 1a40686 7b850f8 1a40686 7b850f8 1a40686 7b850f8 1a40686 7b850f8 1a40686 b3f85f1 1a40686 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# import os
# import logging
# from dotenv import load_dotenv
# import streamlit as st
# from PyPDF2 import PdfReader
# from langchain.text_splitter import CharacterTextSplitter
# # from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain_cohere import CohereEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# # from langchain.llms import Ollama
# from langchain_groq import ChatGroq
# # Load environment variables
# load_dotenv()
# # Set up logging
# logging.basicConfig(
# level=logging.INFO,
# format='%(asctime)s - %(levelname)s - %(message)s'
# )
# # Function to extract text from PDF files
# def get_pdf_text(pdf_docs):
# text = ""
# for pdf in pdf_docs:
# pdf_reader = PdfReader(pdf)
# for page in pdf_reader.pages:
# text += page.extract_text()
# return text
# # Function to split the extracted text into chunks
# def get_text_chunks(text):
# text_splitter = CharacterTextSplitter(
# separator="\n",
# chunk_size=1000,
# chunk_overlap=200,
# length_function=len
# )
# chunks = text_splitter.split_text(text)
# return chunks
# # Function to create a FAISS vectorstore
# # def get_vectorstore(text_chunks):
# # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# # return vectorstore
# def get_vectorstore(text_chunks):
# cohere_api_key = os.getenv("COHERE_API_KEY")
# embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# return vectorstore
# # Function to set up the conversational retrieval chain
# def get_conversation_chain(vectorstore):
# try:
# # llm = Ollama(model="llama3.2:1b")
# llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0.5)
# memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
# conversation_chain = ConversationalRetrievalChain.from_llm(
# llm=llm,
# retriever=vectorstore.as_retriever(),
# memory=memory
# )
# logging.info("Conversation chain created successfully.")
# return conversation_chain
# except Exception as e:
# logging.error(f"Error creating conversation chain: {e}")
# st.error("An error occurred while setting up the conversation chain.")
# # Handle user input
# def handle_userinput(user_question):
# if st.session_state.conversation is not None:
# response = st.session_state.conversation({'question': user_question})
# st.session_state.chat_history = response['chat_history']
# for i, message in enumerate(st.session_state.chat_history):
# if i % 2 == 0:
# st.write(f"*User:* {message.content}")
# else:
# st.write(f"*Bot:* {message.content}")
# else:
# st.warning("Please process the documents first.")
# # Main function to run the Streamlit app
# def main():
# load_dotenv()
# st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
# if "conversation" not in st.session_state:
# st.session_state.conversation = None
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = None
# st.header("Chat with multiple PDFs :books:")
# user_question = st.text_input("Ask a question about your documents:")
# if user_question:
# handle_userinput(user_question)
# with st.sidebar:
# st.subheader("Your documents")
# pdf_docs = st.file_uploader(
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
# )
# if st.button("Process"):
# with st.spinner("Processing..."):
# raw_text = get_pdf_text(pdf_docs)
# text_chunks = get_text_chunks(raw_text)
# vectorstore = get_vectorstore(text_chunks)
# st.session_state.conversation = get_conversation_chain(vectorstore)
# if __name__ == '__main__':
# main()
import streamlit as st
import os
from dotenv import load_dotenv
import PyPDF2
import requests
import cohere
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_cohere import CohereEmbeddings
# Load environment variables
load_dotenv()
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
# Initialize Cohere client
co = cohere.Client(COHERE_API_KEY)
# Configure Streamlit
st.set_page_config(page_title="RAG Chatbot with Gemini & Cohere")
st.title("🤖 Multi-Model RAG Chatbot")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
# File upload and processing
uploaded_file = st.file_uploader("Upload a PDF document", type="pdf")
if uploaded_file and not st.session_state.vector_store:
# Process PDF
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# Split text
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
chunks = text_splitter.split_text(text)
# Create embeddings and vector store
embeddings = CohereEmbeddings(
cohere_api_key=COHERE_API_KEY,
model="embed-english-v3.0",
user_agent="rag-chatbot-v1"
)
st.session_state.vector_store = FAISS.from_texts(
texts=chunks,
embedding=embeddings
)
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Query expansion function
def expand_query(query):
prompt = f"""Generate 3 query variations that help answer: {query}
Format as numbered bullet points:"""
response = co.generate(
prompt=prompt,
max_tokens=100,
temperature=0.7
)
expanded_queries = [query] + [q.split(". ")[1] for q in response.generations[0].text.split("\n") if q]
return expanded_queries
# Gemini API call
def generate_with_gemini(context, query):
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key={GEMINI_API_KEY}"
system_prompt = f"""You're an expert assistant. Use this context to answer:
{context}
Apply Chain of Abstraction and Grounding (CAG):
1. Identify key concepts
2. Create abstract relationships
3. Ground in specific examples
4. Synthesize final answer"""
headers = {"Content-Type": "application/json"}
data = {
"contents": [{
"parts": [{
"text": f"{system_prompt}\n\nQuestion: {query}"
}]
}]
}
response = requests.post(url, json=data, headers=headers)
return response.json()["candidates"][0]["content"]["parts"][0]["text"]
# Chat input
if prompt := st.chat_input("Ask about the document"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Query expansion
expanded_queries = expand_query(prompt)
# Retrieve documents
docs = []
for query in expanded_queries:
docs.extend(st.session_state.vector_store.similarity_search(query, k=2))
# Generate response
context = "\n\n".join([doc.page_content for doc in docs])
response = generate_with_gemini(context, prompt)
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response}) |