File size: 4,296 Bytes
7b850f8 ff5ca1d b86dd1f 7b850f8 9b36123 7b850f8 cb14e97 7b850f8 b86dd1f 7b850f8 b86dd1f ff5ca1d 9b36123 7b850f8 cb14e97 b86dd1f 7b850f8 b86dd1f 7b850f8 cb14e97 7b850f8 6090e99 7b850f8 6090e99 7b850f8 6090e99 7b850f8 6090e99 b86dd1f 7b850f8 cb14e97 7b38ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os
import time
import logging
from dotenv import load_dotenv
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_cohere import CohereEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_groq import ChatGroq
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Function to extract text from PDF files
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Function to split the extracted text into chunks
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# Function to create a FAISS vectorstore with throttling
def get_vectorstore(text_chunks):
cohere_api_key = os.getenv("COHERE_API_KEY")
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
vectorstore = FAISS()
batch_size = 10 # Number of chunks to process per batch
for i in range(0, len(text_chunks), batch_size):
batch = text_chunks[i:i + batch_size]
try:
vectors = embeddings.embed_documents(batch)
vectorstore.add_texts(texts=batch, embeddings=vectors)
logging.info(f"Processed batch {i // batch_size + 1}")
except Exception as e:
logging.error(f"Error processing batch {i // batch_size + 1}: {e}")
time.sleep(1.5) # Sleep to avoid exceeding rate limit
return vectorstore
# Function to set up the conversational retrieval chain
def get_conversation_chain(vectorstore):
try:
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5)
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
logging.info("Conversation chain created successfully.")
return conversation_chain
except Exception as e:
logging.error(f"Error creating conversation chain: {e}")
st.error("An error occurred while setting up the conversation chain.")
# Handle user input
def handle_userinput(user_question):
if st.session_state.conversation is not None:
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(f"*User:* {message.content}")
else:
st.write(f"*Bot:* {message.content}")
else:
st.warning("Please process the documents first.")
# Main function to run the Streamlit app
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == '__main__':
main()
|