# import os | |
# import logging | |
# from dotenv import load_dotenv | |
# import streamlit as st | |
# from PyPDF2 import PdfReader | |
# from langchain.text_splitter import CharacterTextSplitter | |
# # from langchain.embeddings import HuggingFaceInstructEmbeddings | |
# from langchain_cohere import CohereEmbeddings | |
# from langchain.vectorstores import FAISS | |
# from langchain.memory import ConversationBufferMemory | |
# from langchain.chains import ConversationalRetrievalChain | |
# # from langchain.llms import Ollama | |
# from langchain_groq import ChatGroq | |
# # Load environment variables | |
# load_dotenv() | |
# # Set up logging | |
# logging.basicConfig( | |
# level=logging.INFO, | |
# format='%(asctime)s - %(levelname)s - %(message)s' | |
# ) | |
# # Function to extract text from PDF files | |
# def get_pdf_text(pdf_docs): | |
# text = "" | |
# for pdf in pdf_docs: | |
# pdf_reader = PdfReader(pdf) | |
# for page in pdf_reader.pages: | |
# text += page.extract_text() | |
# return text | |
# # Function to split the extracted text into chunks | |
# def get_text_chunks(text): | |
# text_splitter = CharacterTextSplitter( | |
# separator="\n", | |
# chunk_size=1000, | |
# chunk_overlap=200, | |
# length_function=len | |
# ) | |
# chunks = text_splitter.split_text(text) | |
# return chunks | |
# # Function to create a FAISS vectorstore | |
# # def get_vectorstore(text_chunks): | |
# # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
# # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
# # return vectorstore | |
# def get_vectorstore(text_chunks): | |
# cohere_api_key = os.getenv("COHERE_API_KEY") | |
# embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key) | |
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
# return vectorstore | |
# # Function to set up the conversational retrieval chain | |
# def get_conversation_chain(vectorstore): | |
# try: | |
# # llm = Ollama(model="llama3.2:1b") | |
# llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0.5) | |
# memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
# conversation_chain = ConversationalRetrievalChain.from_llm( | |
# llm=llm, | |
# retriever=vectorstore.as_retriever(), | |
# memory=memory | |
# ) | |
# logging.info("Conversation chain created successfully.") | |
# return conversation_chain | |
# except Exception as e: | |
# logging.error(f"Error creating conversation chain: {e}") | |
# st.error("An error occurred while setting up the conversation chain.") | |
# # Handle user input | |
# def handle_userinput(user_question): | |
# if st.session_state.conversation is not None: | |
# response = st.session_state.conversation({'question': user_question}) | |
# st.session_state.chat_history = response['chat_history'] | |
# for i, message in enumerate(st.session_state.chat_history): | |
# if i % 2 == 0: | |
# st.write(f"*User:* {message.content}") | |
# else: | |
# st.write(f"*Bot:* {message.content}") | |
# else: | |
# st.warning("Please process the documents first.") | |
# # Main function to run the Streamlit app | |
# def main(): | |
# load_dotenv() | |
# st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") | |
# if "conversation" not in st.session_state: | |
# st.session_state.conversation = None | |
# if "chat_history" not in st.session_state: | |
# st.session_state.chat_history = None | |
# st.header("Chat with multiple PDFs :books:") | |
# user_question = st.text_input("Ask a question about your documents:") | |
# if user_question: | |
# handle_userinput(user_question) | |
# with st.sidebar: | |
# st.subheader("Your documents") | |
# pdf_docs = st.file_uploader( | |
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True | |
# ) | |
# if st.button("Process"): | |
# with st.spinner("Processing..."): | |
# raw_text = get_pdf_text(pdf_docs) | |
# text_chunks = get_text_chunks(raw_text) | |
# vectorstore = get_vectorstore(text_chunks) | |
# st.session_state.conversation = get_conversation_chain(vectorstore) | |
# if __name__ == '__main__': | |
# main() | |
import streamlit as st | |
import os | |
from dotenv import load_dotenv | |
import PyPDF2 | |
import requests | |
import cohere | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_cohere import CohereEmbeddings | |
# Load environment variables | |
load_dotenv() | |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") | |
COHERE_API_KEY = os.getenv("COHERE_API_KEY") | |
# Initialize Cohere client | |
co = cohere.Client(COHERE_API_KEY) | |
# Configure Streamlit | |
st.set_page_config(page_title="RAG Chatbot with Gemini & Cohere") | |
st.title("π€ Multi-Model RAG Chatbot") | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "vector_store" not in st.session_state: | |
st.session_state.vector_store = None | |
# File upload and processing | |
uploaded_file = st.file_uploader("Upload a PDF document", type="pdf") | |
if uploaded_file and not st.session_state.vector_store: | |
# Process PDF | |
pdf_reader = PyPDF2.PdfReader(uploaded_file) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
# Split text | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200 | |
) | |
chunks = text_splitter.split_text(text) | |
# Create embeddings and vector store | |
embeddings = CohereEmbeddings( | |
cohere_api_key=COHERE_API_KEY, | |
model="embed-english-v3.0", | |
user_agent="rag-chatbot-v1" | |
) | |
st.session_state.vector_store = FAISS.from_texts( | |
texts=chunks, | |
embedding=embeddings | |
) | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Query expansion function | |
def expand_query(query): | |
prompt = f"""Generate 3 query variations that help answer: {query} | |
Format as numbered bullet points:""" | |
response = co.generate( | |
prompt=prompt, | |
max_tokens=100, | |
temperature=0.7 | |
) | |
expanded_queries = [query] + [q.split(". ")[1] for q in response.generations[0].text.split("\n") if q] | |
return expanded_queries | |
# Gemini API call | |
def generate_with_gemini(context, query): | |
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key={GEMINI_API_KEY}" | |
system_prompt = f"""You're an expert assistant. Use this context to answer: | |
{context} | |
Apply Chain of Abstraction and Grounding (CAG): | |
1. Identify key concepts | |
2. Create abstract relationships | |
3. Ground in specific examples | |
4. Synthesize final answer""" | |
headers = {"Content-Type": "application/json"} | |
data = { | |
"contents": [{ | |
"parts": [{ | |
"text": f"{system_prompt}\n\nQuestion: {query}" | |
}] | |
}] | |
} | |
response = requests.post(url, json=data, headers=headers) | |
return response.json()["candidates"][0]["content"]["parts"][0]["text"] | |
# Chat input | |
if prompt := st.chat_input("Ask about the document"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Query expansion | |
expanded_queries = expand_query(prompt) | |
# Retrieve documents | |
docs = [] | |
for query in expanded_queries: | |
docs.extend(st.session_state.vector_store.similarity_search(query, k=2)) | |
# Generate response | |
context = "\n\n".join([doc.page_content for doc in docs]) | |
response = generate_with_gemini(context, prompt) | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) |