File size: 1,564 Bytes
10bb1e5 263c915 10bb1e5 f22616f 10bb1e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import torch
from transformers import ViTForImageClassification, ViTFeatureExtractor
from PIL import Image
# Load model and feature extractor
model = ViTForImageClassification.from_pretrained('shahmi0519/banana_artificial_v2', num_labels=2, ignore_mismatched_sizes=True)
feature_extractor = ViTFeatureExtractor.from_pretrained('shahmi0519/banana_artificial_v2')
# Move to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
# Class labels (modify according to your model)
class_labels = [
"Artificial",
"Natural"
]
def predict_freshness(image):
# Preprocess image
inputs = feature_extractor(images=image, return_tensors="pt").to(device)
# Predict
model.eval()
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
# Get label
try:
label = class_labels[predicted_class_idx]
except IndexError:
label = f"Class {predicted_class_idx}"
return label
# Create Gradio interface
title = "Freshness Detector"
description = "Upload an image of fruit/vegetable to detect its freshness state"
examples = [
["apple.jpeg"],
["banana.jpeg"],
["tomato.jpeg"]
]
iface = gr.Interface(
fn=predict_freshness,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=gr.Label(label="Freshness State"),
title=title,
description=description,
examples=examples
)
iface.launch(share=True) |