File size: 953 Bytes
b2f106f
 
 
 
 
413f255
b2f106f
 
 
 
 
 
 
 
 
413f255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2f106f
 
413f255
 
b2f106f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# -*- coding: utf-8 -*-

import pandas as pd
from pycaret.regression import load_model, predict_model
from fastapi import FastAPI
from pydantic import BaseModel
import uvicorn

# Create the app
app = FastAPI()

# Load trained Pipeline
model = load_model("lr_api")

# Create input/output pydantic models
class InputModel(BaseModel):
    rownames: int
    year: int
    violent: float
    murder: float
    prisoners: int
    afam: float
    cauc: float
    male: float
    population: float
    income: float
    density: float
    state: str
    law: str

class OutputModel(BaseModel):
    prediction: float

# Define predict function
@app.post("/predict", response_model=OutputModel)
def predict(data: InputModel):
    data = pd.DataFrame([data.dict()])
    predictions = predict_model(model, data=data)
    return {"prediction": predictions["prediction_label"].iloc[0]}


#if __name__ == "__main__":
#    uvicorn.run(app, host="127.0.0.1", port=8000)