|
import numpy as np |
|
import cv2 |
|
|
|
class yolox(): |
|
def __init__(self, model, p6=False, confThreshold=0.5, nmsThreshold=0.5, objThreshold=0.5): |
|
with open('coco.names', 'rt') as f: |
|
self.class_names = f.read().rstrip('\n').split('\n') |
|
self.net = cv2.dnn.readNet(model) |
|
self.input_size = (640, 640) |
|
self.mean = (0.485, 0.456, 0.406) |
|
self.std = (0.229, 0.224, 0.225) |
|
if not p6: |
|
self.strides = [8, 16, 32] |
|
else: |
|
self.strides = [8, 16, 32, 64] |
|
self.confThreshold = confThreshold |
|
self.nmsThreshold = nmsThreshold |
|
self.objThreshold = objThreshold |
|
|
|
def preprocess(self, image): |
|
if len(image.shape) == 3: |
|
padded_img = np.ones((self.input_size[0], self.input_size[1], 3)) * 114.0 |
|
else: |
|
padded_img = np.ones(self.input_size) * 114.0 |
|
img = np.array(image) |
|
r = min(self.input_size[0] / img.shape[0], self.input_size[1] / img.shape[1]) |
|
resized_img = cv2.resize( |
|
img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR |
|
).astype(np.float32) |
|
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img |
|
image = padded_img |
|
|
|
image = image.astype(np.float32) |
|
image = image[:, :, ::-1] |
|
image /= 255.0 |
|
image -= self.mean |
|
image /= self.std |
|
return image, r |
|
|
|
def demo_postprocess(self, outputs): |
|
grids = [] |
|
expanded_strides = [] |
|
hsizes = [self.input_size[0] // stride for stride in self.strides] |
|
wsizes = [self.input_size[1] // stride for stride in self.strides] |
|
|
|
for hsize, wsize, stride in zip(hsizes, wsizes, self.strides): |
|
xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize)) |
|
grid = np.stack((xv, yv), 2).reshape(1, -1, 2) |
|
grids.append(grid) |
|
shape = grid.shape[:2] |
|
expanded_strides.append(np.full((*shape, 1), stride)) |
|
|
|
grids = np.concatenate(grids, 1) |
|
expanded_strides = np.concatenate(expanded_strides, 1) |
|
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides |
|
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides |
|
return outputs |
|
|
|
def nms(self, boxes, scores): |
|
"""Single class NMS implemented in Numpy.""" |
|
x1 = boxes[:, 0] |
|
y1 = boxes[:, 1] |
|
x2 = boxes[:, 2] |
|
y2 = boxes[:, 3] |
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
order = scores.argsort()[::-1] |
|
|
|
keep = [] |
|
while order.size > 0: |
|
i = order[0] |
|
keep.append(i) |
|
xx1 = np.maximum(x1[i], x1[order[1:]]) |
|
yy1 = np.maximum(y1[i], y1[order[1:]]) |
|
xx2 = np.minimum(x2[i], x2[order[1:]]) |
|
yy2 = np.minimum(y2[i], y2[order[1:]]) |
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1) |
|
h = np.maximum(0.0, yy2 - yy1 + 1) |
|
inter = w * h |
|
ovr = inter / (areas[i] + areas[order[1:]] - inter) |
|
|
|
inds = np.where(ovr <= self.nmsThreshold)[0] |
|
order = order[inds + 1] |
|
|
|
return keep |
|
|
|
def multiclass_nms(self, boxes, scores): |
|
"""Multiclass NMS implemented in Numpy""" |
|
final_dets = [] |
|
num_classes = scores.shape[1] |
|
for cls_ind in range(num_classes): |
|
cls_scores = scores[:, cls_ind] |
|
valid_score_mask = cls_scores > self.confThreshold |
|
if valid_score_mask.sum() == 0: |
|
continue |
|
else: |
|
valid_scores = cls_scores[valid_score_mask] |
|
valid_boxes = boxes[valid_score_mask] |
|
keep = self.nms(valid_boxes, valid_scores) |
|
if len(keep) > 0: |
|
cls_inds = np.ones((len(keep), 1)) * cls_ind |
|
dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1) |
|
final_dets.append(dets) |
|
if len(final_dets) == 0: |
|
return None |
|
return np.concatenate(final_dets, 0) |
|
|
|
def vis(self, img, boxes, scores, cls_ids): |
|
detected_classes = [] |
|
for i in range(len(boxes)): |
|
box = boxes[i] |
|
cls_id = int(cls_ids[i]) |
|
score = scores[i] |
|
if score < self.confThreshold: |
|
continue |
|
x0 = int(box[0]) |
|
y0 = int(box[1]) |
|
x1 = int(box[2]) |
|
y1 = int(box[3]) |
|
|
|
class_name = self.class_names[cls_id] |
|
detected_classes.append(class_name) |
|
text = '{}:{:.1f}%'.format(class_name, score * 100) |
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
txt_size = cv2.getTextSize(text, font, 0.4, 1)[0] |
|
cv2.rectangle(img, (x0, y0), (x1, y1), (0, 0, 255), 2) |
|
cv2.rectangle(img, (x0, y0 + 1), (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])), (255, 255, 255), -1) |
|
cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, (0, 0, 0), thickness=1) |
|
return img, detected_classes |
|
|
|
def detect(self, srcimg): |
|
detected_classes = [] |
|
img, ratio = self.preprocess(srcimg) |
|
blob = cv2.dnn.blobFromImage(img) |
|
self.net.setInput(blob) |
|
outs = self.net.forward(self.net.getUnconnectedOutLayersNames()) |
|
predictions = self.demo_postprocess(outs[0])[0] |
|
|
|
boxes = predictions[:, :4] |
|
scores = predictions[:, 4:5] * predictions[:, 5:] |
|
|
|
boxes_xyxy = np.ones_like(boxes) |
|
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2. |
|
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2. |
|
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2. |
|
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2. |
|
boxes_xyxy /= ratio |
|
dets = self.multiclass_nms(boxes_xyxy, scores) |
|
if dets is not None: |
|
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5] |
|
srcimg, detected_classes = self.vis(srcimg, final_boxes, final_scores, final_cls_inds) |
|
return srcimg, ", ".join(list(set(detected_classes))) if len(detected_classes) > 0 else "" |
|
|
|
|