|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import sys |
|
import unittest |
|
from contextlib import ExitStack |
|
from unittest.mock import MagicMock, patch |
|
|
|
import pytest |
|
from huggingface_hub import ChatCompletionOutputMessage |
|
|
|
from smolagents.default_tools import FinalAnswerTool |
|
from smolagents.models import ( |
|
AmazonBedrockServerModel, |
|
AzureOpenAIServerModel, |
|
ChatMessage, |
|
ChatMessageToolCall, |
|
InferenceClientModel, |
|
LiteLLMModel, |
|
LiteLLMRouterModel, |
|
MessageRole, |
|
MLXModel, |
|
Model, |
|
OpenAIServerModel, |
|
TransformersModel, |
|
get_clean_message_list, |
|
get_tool_call_from_text, |
|
get_tool_json_schema, |
|
parse_json_if_needed, |
|
supports_stop_parameter, |
|
) |
|
from smolagents.tools import tool |
|
|
|
from .utils.markers import require_run_all |
|
|
|
|
|
class TestModel: |
|
def test_agglomerate_stream_deltas(self): |
|
from smolagents.models import ( |
|
ChatMessageStreamDelta, |
|
ChatMessageToolCallFunction, |
|
ChatMessageToolCallStreamDelta, |
|
TokenUsage, |
|
agglomerate_stream_deltas, |
|
) |
|
|
|
stream_deltas = [ |
|
ChatMessageStreamDelta( |
|
content="Hi", |
|
tool_calls=[ |
|
ChatMessageToolCallStreamDelta( |
|
index=0, |
|
type="function", |
|
function=ChatMessageToolCallFunction(arguments="", name="web_search", description=None), |
|
) |
|
], |
|
token_usage=None, |
|
), |
|
ChatMessageStreamDelta( |
|
content=" everyone", |
|
tool_calls=[ |
|
ChatMessageToolCallStreamDelta( |
|
index=0, |
|
type="function", |
|
function=ChatMessageToolCallFunction(arguments=' {"', name="web_search", description=None), |
|
) |
|
], |
|
token_usage=None, |
|
), |
|
ChatMessageStreamDelta( |
|
content=", it's", |
|
tool_calls=[ |
|
ChatMessageToolCallStreamDelta( |
|
index=0, |
|
type="function", |
|
function=ChatMessageToolCallFunction( |
|
arguments='query": "current pope name and date of birth"}', |
|
name="web_search", |
|
description=None, |
|
), |
|
) |
|
], |
|
token_usage=None, |
|
), |
|
ChatMessageStreamDelta( |
|
content="", |
|
tool_calls=None, |
|
token_usage=TokenUsage(input_tokens=1348, output_tokens=24), |
|
), |
|
] |
|
agglomerated_stream_delta = agglomerate_stream_deltas(stream_deltas) |
|
assert agglomerated_stream_delta.content == "Hi everyone, it's" |
|
assert ( |
|
agglomerated_stream_delta.tool_calls[0].function.arguments |
|
== ' {"query": "current pope name and date of birth"}' |
|
) |
|
assert agglomerated_stream_delta.token_usage.total_tokens == 1372 |
|
|
|
@pytest.mark.parametrize( |
|
"model_id, stop_sequences, should_contain_stop", |
|
[ |
|
("regular-model", ["stop1", "stop2"], True), |
|
("openai/o3", ["stop1", "stop2"], False), |
|
("openai/o4-mini", ["stop1", "stop2"], False), |
|
("something/else/o3", ["stop1", "stop2"], False), |
|
("something/else/o4-mini", ["stop1", "stop2"], False), |
|
("o3", ["stop1", "stop2"], False), |
|
("o4-mini", ["stop1", "stop2"], False), |
|
("regular-model", None, False), |
|
], |
|
) |
|
def test_prepare_completion_kwargs_stop_sequences(self, model_id, stop_sequences, should_contain_stop): |
|
model = Model() |
|
model.model_id = model_id |
|
completion_kwargs = model._prepare_completion_kwargs( |
|
messages=[ |
|
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello"}]), |
|
], |
|
stop_sequences=stop_sequences, |
|
) |
|
|
|
if should_contain_stop: |
|
assert "stop" in completion_kwargs |
|
assert completion_kwargs["stop"] == stop_sequences |
|
else: |
|
assert "stop" not in completion_kwargs |
|
|
|
@pytest.mark.parametrize( |
|
"with_tools, tool_choice, expected_result", |
|
[ |
|
|
|
(True, ..., {"has_tool_choice": True, "value": "required"}), |
|
|
|
(True, "auto", {"has_tool_choice": True, "value": "auto"}), |
|
|
|
(True, "valid_tool_function", {"has_tool_choice": True, "value": "valid_tool_function"}), |
|
|
|
( |
|
True, |
|
{"type": "function", "function": {"name": "valid_tool_function"}}, |
|
{"has_tool_choice": True, "value": {"type": "function", "function": {"name": "valid_tool_function"}}}, |
|
), |
|
|
|
(True, None, {"has_tool_choice": False, "value": None}), |
|
|
|
(False, "required", {"has_tool_choice": False, "value": None}), |
|
(False, "auto", {"has_tool_choice": False, "value": None}), |
|
(False, None, {"has_tool_choice": False, "value": None}), |
|
(False, ..., {"has_tool_choice": False, "value": None}), |
|
], |
|
) |
|
def test_prepare_completion_kwargs_tool_choice(self, with_tools, tool_choice, expected_result, example_tool): |
|
model = Model() |
|
kwargs = {"messages": [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello"}])]} |
|
if with_tools: |
|
kwargs["tools_to_call_from"] = [example_tool] |
|
if tool_choice is not ...: |
|
kwargs["tool_choice"] = tool_choice |
|
|
|
completion_kwargs = model._prepare_completion_kwargs(**kwargs) |
|
|
|
if expected_result["has_tool_choice"]: |
|
assert "tool_choice" in completion_kwargs |
|
assert completion_kwargs["tool_choice"] == expected_result["value"] |
|
else: |
|
assert "tool_choice" not in completion_kwargs |
|
|
|
def test_get_json_schema_has_nullable_args(self): |
|
@tool |
|
def get_weather(location: str, celsius: bool | None = False) -> str: |
|
""" |
|
Get weather in the next days at given location. |
|
Secretly this tool does not care about the location, it hates the weather everywhere. |
|
|
|
Args: |
|
location: the location |
|
celsius: the temperature type |
|
""" |
|
return "The weather is UNGODLY with torrential rains and temperatures below -10°C" |
|
|
|
assert "nullable" in get_tool_json_schema(get_weather)["function"]["parameters"]["properties"]["celsius"] |
|
|
|
def test_chatmessage_has_model_dumps_json(self): |
|
message = ChatMessage("user", [{"type": "text", "text": "Hello!"}]) |
|
data = json.loads(message.model_dump_json()) |
|
assert data["content"] == [{"type": "text", "text": "Hello!"}] |
|
|
|
@unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS") |
|
def test_get_mlx_message_no_tool(self): |
|
model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=10) |
|
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] |
|
output = model(messages, stop_sequences=["great"]).content |
|
assert output.startswith("Hello") |
|
|
|
@unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS") |
|
def test_get_mlx_message_tricky_stop_sequence(self): |
|
|
|
|
|
model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=100) |
|
stop_sequence = " print '>" |
|
messages = [ |
|
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": f"Please{stop_sequence}'"}]), |
|
] |
|
|
|
assert model.tokenizer.vocab[">'"] |
|
assert model(messages, stop_sequences=[]).content == f"I'm ready to help you{stop_sequence}'" |
|
|
|
assert model(messages, stop_sequences=[stop_sequence]).content == "I'm ready to help you" |
|
|
|
def test_transformers_message_no_tool(self, monkeypatch): |
|
monkeypatch.setattr("huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT", 30) |
|
model = TransformersModel( |
|
model_id="HuggingFaceTB/SmolLM2-135M-Instruct", |
|
max_new_tokens=5, |
|
device_map="cpu", |
|
do_sample=False, |
|
) |
|
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] |
|
output = model.generate(messages).content |
|
assert output == "Hello! I'm here" |
|
|
|
output = model.generate_stream(messages, stop_sequences=["great"]) |
|
output_str = "" |
|
for el in output: |
|
output_str += el.content |
|
assert output_str == "Hello! I'm here" |
|
|
|
def test_transformers_message_vl_no_tool(self, shared_datadir, monkeypatch): |
|
monkeypatch.setattr("huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT", 30) |
|
import PIL.Image |
|
|
|
img = PIL.Image.open(shared_datadir / "000000039769.png") |
|
model = TransformersModel( |
|
model_id="llava-hf/llava-interleave-qwen-0.5b-hf", |
|
max_new_tokens=4, |
|
device_map="cpu", |
|
do_sample=False, |
|
) |
|
messages = [ |
|
ChatMessage( |
|
role=MessageRole.USER, |
|
content=[{"type": "text", "text": "What is this?"}, {"type": "image", "image": img}], |
|
) |
|
] |
|
output = model.generate(messages).content |
|
assert output == "This is a very" |
|
|
|
output = model.generate_stream(messages, stop_sequences=["great"]) |
|
output_str = "" |
|
for el in output: |
|
output_str += el.content |
|
assert output_str == "This is a very" |
|
|
|
def test_parse_json_if_needed(self): |
|
args = "abc" |
|
parsed_args = parse_json_if_needed(args) |
|
assert parsed_args == "abc" |
|
|
|
args = '{"a": 3}' |
|
parsed_args = parse_json_if_needed(args) |
|
assert parsed_args == {"a": 3} |
|
|
|
args = "3" |
|
parsed_args = parse_json_if_needed(args) |
|
assert parsed_args == 3 |
|
|
|
args = 3 |
|
parsed_args = parse_json_if_needed(args) |
|
assert parsed_args == 3 |
|
|
|
|
|
class TestInferenceClientModel: |
|
def test_call_with_custom_role_conversions(self): |
|
custom_role_conversions = {MessageRole.USER: MessageRole.SYSTEM} |
|
model = InferenceClientModel(model_id="test-model", custom_role_conversions=custom_role_conversions) |
|
model.client = MagicMock() |
|
mock_response = model.client.chat_completion.return_value |
|
mock_response.choices[0].message = ChatCompletionOutputMessage(role=MessageRole.ASSISTANT) |
|
messages = [ChatMessage(role=MessageRole.USER, content="Test message")] |
|
_ = model(messages) |
|
|
|
assert model.client.chat_completion.call_args.kwargs["messages"][0]["role"] == "system", ( |
|
"role conversion should be applied" |
|
) |
|
|
|
def test_init_model_with_tokens(self): |
|
model = InferenceClientModel(model_id="test-model", token="abc") |
|
assert model.client.token == "abc" |
|
|
|
model = InferenceClientModel(model_id="test-model", api_key="abc") |
|
assert model.client.token == "abc" |
|
|
|
with pytest.raises(ValueError, match="Received both `token` and `api_key` arguments."): |
|
InferenceClientModel(model_id="test-model", token="abc", api_key="def") |
|
|
|
def test_structured_outputs_with_unsupported_provider(self): |
|
with pytest.raises( |
|
ValueError, match="InferenceClientModel only supports structured outputs with these providers:" |
|
): |
|
model = InferenceClientModel(model_id="test-model", token="abc", provider="some_provider") |
|
model.generate( |
|
messages=[ChatMessage(role=MessageRole.USER, content="Hello!")], |
|
response_format={"type": "json_object"}, |
|
) |
|
|
|
@require_run_all |
|
def test_get_hfapi_message_no_tool(self): |
|
model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10) |
|
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] |
|
model(messages, stop_sequences=["great"]) |
|
|
|
@require_run_all |
|
def test_get_hfapi_message_no_tool_external_provider(self): |
|
model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10) |
|
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] |
|
model(messages, stop_sequences=["great"]) |
|
|
|
@require_run_all |
|
def test_get_hfapi_message_stream_no_tool(self): |
|
model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10) |
|
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] |
|
for el in model.generate_stream(messages, stop_sequences=["great"]): |
|
assert el.content is not None |
|
|
|
@require_run_all |
|
def test_get_hfapi_message_stream_no_tool_external_provider(self): |
|
model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10) |
|
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] |
|
for el in model.generate_stream(messages, stop_sequences=["great"]): |
|
assert el.content is not None |
|
|
|
|
|
class TestLiteLLMModel: |
|
@pytest.mark.parametrize( |
|
"model_id, error_flag", |
|
[ |
|
("groq/llama-3.3-70b", "Invalid API Key"), |
|
("cerebras/llama-3.3-70b", "The api_key client option must be set"), |
|
("mistral/mistral-tiny", "The api_key client option must be set"), |
|
], |
|
) |
|
def test_call_different_providers_without_key(self, model_id, error_flag): |
|
model = LiteLLMModel(model_id=model_id) |
|
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Test message"}])] |
|
with pytest.raises(Exception) as e: |
|
|
|
model.generate(messages) |
|
assert error_flag in str(e) |
|
with pytest.raises(Exception) as e: |
|
|
|
for el in model.generate_stream(messages): |
|
assert el.content is not None |
|
assert error_flag in str(e) |
|
|
|
def test_passing_flatten_messages(self): |
|
model = LiteLLMModel(model_id="groq/llama-3.3-70b", flatten_messages_as_text=False) |
|
assert not model.flatten_messages_as_text |
|
|
|
model = LiteLLMModel(model_id="fal/llama-3.3-70b", flatten_messages_as_text=True) |
|
assert model.flatten_messages_as_text |
|
|
|
|
|
class TestLiteLLMRouterModel: |
|
@pytest.mark.parametrize( |
|
"model_id, expected", |
|
[ |
|
("llama-3.3-70b", False), |
|
("llama-3.3-70b", True), |
|
("mistral-tiny", True), |
|
], |
|
) |
|
def test_flatten_messages_as_text(self, model_id, expected): |
|
model_list = [ |
|
{"model_name": "llama-3.3-70b", "litellm_params": {"model": "groq/llama-3.3-70b"}}, |
|
{"model_name": "llama-3.3-70b", "litellm_params": {"model": "cerebras/llama-3.3-70b"}}, |
|
{"model_name": "mistral-tiny", "litellm_params": {"model": "mistral/mistral-tiny"}}, |
|
] |
|
model = LiteLLMRouterModel(model_id=model_id, model_list=model_list, flatten_messages_as_text=expected) |
|
assert model.flatten_messages_as_text is expected |
|
|
|
def test_create_client(self): |
|
model_list = [ |
|
{"model_name": "llama-3.3-70b", "litellm_params": {"model": "groq/llama-3.3-70b"}}, |
|
{"model_name": "llama-3.3-70b", "litellm_params": {"model": "cerebras/llama-3.3-70b"}}, |
|
] |
|
with patch("litellm.router.Router") as mock_router: |
|
router_model = LiteLLMRouterModel( |
|
model_id="model-group-1", model_list=model_list, client_kwargs={"routing_strategy": "simple-shuffle"} |
|
) |
|
|
|
mock_router.assert_called_once() |
|
assert mock_router.call_count == 1 |
|
assert mock_router.call_args.kwargs["model_list"] == model_list |
|
assert mock_router.call_args.kwargs["routing_strategy"] == "simple-shuffle" |
|
assert router_model.client == mock_router.return_value |
|
|
|
|
|
class TestOpenAIServerModel: |
|
def test_client_kwargs_passed_correctly(self): |
|
model_id = "gpt-3.5-turbo" |
|
api_base = "https://api.openai.com/v1" |
|
api_key = "test_api_key" |
|
organization = "test_org" |
|
project = "test_project" |
|
client_kwargs = {"max_retries": 5} |
|
|
|
with patch("openai.OpenAI") as MockOpenAI: |
|
model = OpenAIServerModel( |
|
model_id=model_id, |
|
api_base=api_base, |
|
api_key=api_key, |
|
organization=organization, |
|
project=project, |
|
client_kwargs=client_kwargs, |
|
) |
|
MockOpenAI.assert_called_once_with( |
|
base_url=api_base, api_key=api_key, organization=organization, project=project, max_retries=5 |
|
) |
|
assert model.client == MockOpenAI.return_value |
|
|
|
@require_run_all |
|
def test_streaming_tool_calls(self): |
|
model = OpenAIServerModel(model_id="gpt-4o-mini") |
|
messages = [ |
|
ChatMessage( |
|
role=MessageRole.USER, |
|
content=[ |
|
{ |
|
"type": "text", |
|
"text": "Hello! Please return the final answer 'blob' and the final answer 'blob2' in two parallel tool calls", |
|
} |
|
], |
|
), |
|
] |
|
for el in model.generate_stream(messages, tools_to_call_from=[FinalAnswerTool()]): |
|
if el.tool_calls: |
|
assert el.tool_calls[0].function.name == "final_answer" |
|
args = el.tool_calls[0].function.arguments |
|
if len(el.tool_calls) > 1: |
|
assert el.tool_calls[1].function.name == "final_answer" |
|
args2 = el.tool_calls[1].function.arguments |
|
assert args == '{"answer": "blob"}' |
|
assert args2 == '{"answer": "blob2"}' |
|
|
|
|
|
class TestAmazonBedrockServerModel: |
|
def test_client_for_bedrock(self): |
|
model_id = "us.amazon.nova-pro-v1:0" |
|
|
|
with patch("boto3.client") as MockBoto3: |
|
model = AmazonBedrockServerModel( |
|
model_id=model_id, |
|
) |
|
|
|
assert model.client == MockBoto3.return_value |
|
|
|
|
|
class TestAzureOpenAIServerModel: |
|
def test_client_kwargs_passed_correctly(self): |
|
model_id = "gpt-3.5-turbo" |
|
api_key = "test_api_key" |
|
api_version = "2023-12-01-preview" |
|
azure_endpoint = "https://example-resource.azure.openai.com/" |
|
organization = "test_org" |
|
project = "test_project" |
|
client_kwargs = {"max_retries": 5} |
|
|
|
with patch("openai.OpenAI") as MockOpenAI, patch("openai.AzureOpenAI") as MockAzureOpenAI: |
|
model = AzureOpenAIServerModel( |
|
model_id=model_id, |
|
api_key=api_key, |
|
api_version=api_version, |
|
azure_endpoint=azure_endpoint, |
|
organization=organization, |
|
project=project, |
|
client_kwargs=client_kwargs, |
|
) |
|
assert MockOpenAI.call_count == 0 |
|
MockAzureOpenAI.assert_called_once_with( |
|
base_url=None, |
|
api_key=api_key, |
|
api_version=api_version, |
|
azure_endpoint=azure_endpoint, |
|
organization=organization, |
|
project=project, |
|
max_retries=5, |
|
) |
|
assert model.client == MockAzureOpenAI.return_value |
|
|
|
|
|
class TestTransformersModel: |
|
@pytest.mark.parametrize( |
|
"patching", |
|
[ |
|
[ |
|
( |
|
"transformers.AutoModelForImageTextToText.from_pretrained", |
|
{"side_effect": ValueError("Unrecognized configuration class")}, |
|
), |
|
("transformers.AutoModelForCausalLM.from_pretrained", {}), |
|
("transformers.AutoTokenizer.from_pretrained", {}), |
|
], |
|
[ |
|
("transformers.AutoModelForImageTextToText.from_pretrained", {}), |
|
("transformers.AutoProcessor.from_pretrained", {}), |
|
], |
|
], |
|
) |
|
def test_init(self, patching): |
|
with ExitStack() as stack: |
|
mocks = {target: stack.enter_context(patch(target, **kwargs)) for target, kwargs in patching} |
|
model = TransformersModel( |
|
model_id="test-model", device_map="cpu", torch_dtype="float16", trust_remote_code=True |
|
) |
|
assert model.model_id == "test-model" |
|
if "transformers.AutoTokenizer.from_pretrained" in mocks: |
|
assert model.model == mocks["transformers.AutoModelForCausalLM.from_pretrained"].return_value |
|
assert mocks["transformers.AutoModelForCausalLM.from_pretrained"].call_args.kwargs == { |
|
"device_map": "cpu", |
|
"torch_dtype": "float16", |
|
"trust_remote_code": True, |
|
} |
|
assert model.tokenizer == mocks["transformers.AutoTokenizer.from_pretrained"].return_value |
|
assert mocks["transformers.AutoTokenizer.from_pretrained"].call_args.args == ("test-model",) |
|
assert mocks["transformers.AutoTokenizer.from_pretrained"].call_args.kwargs == {"trust_remote_code": True} |
|
elif "transformers.AutoProcessor.from_pretrained" in mocks: |
|
assert model.model == mocks["transformers.AutoModelForImageTextToText.from_pretrained"].return_value |
|
assert mocks["transformers.AutoModelForImageTextToText.from_pretrained"].call_args.kwargs == { |
|
"device_map": "cpu", |
|
"torch_dtype": "float16", |
|
"trust_remote_code": True, |
|
} |
|
assert model.processor == mocks["transformers.AutoProcessor.from_pretrained"].return_value |
|
assert mocks["transformers.AutoProcessor.from_pretrained"].call_args.args == ("test-model",) |
|
assert mocks["transformers.AutoProcessor.from_pretrained"].call_args.kwargs == {"trust_remote_code": True} |
|
|
|
|
|
def test_get_clean_message_list_basic(): |
|
messages = [ |
|
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}]), |
|
ChatMessage(role=MessageRole.ASSISTANT, content=[{"type": "text", "text": "Hi there!"}]), |
|
] |
|
result = get_clean_message_list(messages) |
|
assert len(result) == 2 |
|
assert result[0]["role"] == "user" |
|
assert result[0]["content"][0]["text"] == "Hello!" |
|
assert result[1]["role"] == "assistant" |
|
assert result[1]["content"][0]["text"] == "Hi there!" |
|
|
|
|
|
def test_get_clean_message_list_role_conversions(): |
|
messages = [ |
|
ChatMessage(role=MessageRole.TOOL_CALL, content=[{"type": "text", "text": "Calling tool..."}]), |
|
ChatMessage(role=MessageRole.TOOL_RESPONSE, content=[{"type": "text", "text": "Tool response"}]), |
|
] |
|
result = get_clean_message_list(messages, role_conversions={"tool-call": "assistant", "tool-response": "user"}) |
|
assert len(result) == 2 |
|
assert result[0]["role"] == "assistant" |
|
assert result[0]["content"][0]["text"] == "Calling tool..." |
|
assert result[1]["role"] == "user" |
|
assert result[1]["content"][0]["text"] == "Tool response" |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"convert_images_to_image_urls, expected_clean_message", |
|
[ |
|
( |
|
False, |
|
dict( |
|
role=MessageRole.USER, |
|
content=[ |
|
{"type": "image", "image": "encoded_image"}, |
|
{"type": "image", "image": "second_encoded_image"}, |
|
], |
|
), |
|
), |
|
( |
|
True, |
|
dict( |
|
role=MessageRole.USER, |
|
content=[ |
|
{"type": "image_url", "image_url": {"url": "_image"}}, |
|
{"type": "image_url", "image_url": {"url": "_encoded_image"}}, |
|
], |
|
), |
|
), |
|
], |
|
) |
|
def test_get_clean_message_list_image_encoding(convert_images_to_image_urls, expected_clean_message): |
|
message = ChatMessage( |
|
role=MessageRole.USER, |
|
content=[{"type": "image", "image": b"image_data"}, {"type": "image", "image": b"second_image_data"}], |
|
) |
|
with patch("smolagents.models.encode_image_base64") as mock_encode: |
|
mock_encode.side_effect = ["encoded_image", "second_encoded_image"] |
|
result = get_clean_message_list([message], convert_images_to_image_urls=convert_images_to_image_urls) |
|
mock_encode.assert_any_call(b"image_data") |
|
mock_encode.assert_any_call(b"second_image_data") |
|
assert len(result) == 1 |
|
assert result[0] == expected_clean_message |
|
|
|
|
|
def test_get_clean_message_list_flatten_messages_as_text(): |
|
messages = [ |
|
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}]), |
|
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "How are you?"}]), |
|
] |
|
result = get_clean_message_list(messages, flatten_messages_as_text=True) |
|
assert len(result) == 1 |
|
assert result[0]["role"] == "user" |
|
assert result[0]["content"] == "Hello!\nHow are you?" |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"model_class, model_kwargs, patching, expected_flatten_messages_as_text", |
|
[ |
|
(AzureOpenAIServerModel, {}, ("openai.AzureOpenAI", {}), False), |
|
(InferenceClientModel, {}, ("huggingface_hub.InferenceClient", {}), False), |
|
(LiteLLMModel, {}, None, False), |
|
(LiteLLMModel, {"model_id": "ollama"}, None, True), |
|
(LiteLLMModel, {"model_id": "groq"}, None, True), |
|
(LiteLLMModel, {"model_id": "cerebras"}, None, True), |
|
(MLXModel, {}, ("mlx_lm.load", {"return_value": (MagicMock(), MagicMock())}), True), |
|
(OpenAIServerModel, {}, ("openai.OpenAI", {}), False), |
|
(OpenAIServerModel, {"flatten_messages_as_text": True}, ("openai.OpenAI", {}), True), |
|
( |
|
TransformersModel, |
|
{}, |
|
[ |
|
( |
|
"transformers.AutoModelForImageTextToText.from_pretrained", |
|
{"side_effect": ValueError("Unrecognized configuration class")}, |
|
), |
|
("transformers.AutoModelForCausalLM.from_pretrained", {}), |
|
("transformers.AutoTokenizer.from_pretrained", {}), |
|
], |
|
True, |
|
), |
|
( |
|
TransformersModel, |
|
{}, |
|
[ |
|
("transformers.AutoModelForImageTextToText.from_pretrained", {}), |
|
("transformers.AutoProcessor.from_pretrained", {}), |
|
], |
|
False, |
|
), |
|
], |
|
) |
|
def test_flatten_messages_as_text_for_all_models( |
|
model_class, model_kwargs, patching, expected_flatten_messages_as_text |
|
): |
|
with ExitStack() as stack: |
|
if isinstance(patching, list): |
|
for target, kwargs in patching: |
|
stack.enter_context(patch(target, **kwargs)) |
|
elif patching: |
|
target, kwargs = patching |
|
stack.enter_context(patch(target, **kwargs)) |
|
|
|
model = model_class(**{"model_id": "test-model", **model_kwargs}) |
|
assert model.flatten_messages_as_text is expected_flatten_messages_as_text, f"{model_class.__name__} failed" |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"model_id,expected", |
|
[ |
|
|
|
("o3", False), |
|
("o4-mini", False), |
|
|
|
("o3-2025-04-16", False), |
|
("o4-mini-2025-04-16", False), |
|
|
|
("openai/o3", False), |
|
("openai/o4-mini", False), |
|
("openai/o3-2025-04-16", False), |
|
("openai/o4-mini-2025-04-16", False), |
|
|
|
("o3-mini", True), |
|
("o3-mini-2025-01-31", True), |
|
("o4", True), |
|
("o4-turbo", True), |
|
("gpt-4", True), |
|
("claude-3-5-sonnet", True), |
|
("mistral-large", True), |
|
|
|
("openai/gpt-4", True), |
|
("anthropic/claude-3-5-sonnet", True), |
|
("mistralai/mistral-large", True), |
|
|
|
("", True), |
|
("o3x", True), |
|
("o3_mini", True), |
|
("prefix-o3", True), |
|
], |
|
) |
|
def test_supports_stop_parameter(model_id, expected): |
|
"""Test the supports_stop_parameter function with various model IDs""" |
|
assert supports_stop_parameter(model_id) == expected, f"Failed for model_id: {model_id}" |
|
|
|
|
|
class TestGetToolCallFromText: |
|
@pytest.fixture(autouse=True) |
|
def mock_uuid4(self): |
|
with patch("uuid.uuid4", return_value="test-uuid"): |
|
yield |
|
|
|
def test_get_tool_call_from_text_basic(self): |
|
text = '{"name": "weather_tool", "arguments": "New York"}' |
|
result = get_tool_call_from_text(text, "name", "arguments") |
|
assert isinstance(result, ChatMessageToolCall) |
|
assert result.id == "test-uuid" |
|
assert result.type == "function" |
|
assert result.function.name == "weather_tool" |
|
assert result.function.arguments == "New York" |
|
|
|
def test_get_tool_call_from_text_name_key_missing(self): |
|
text = '{"action": "weather_tool", "arguments": "New York"}' |
|
with pytest.raises(ValueError) as exc_info: |
|
get_tool_call_from_text(text, "name", "arguments") |
|
error_msg = str(exc_info.value) |
|
assert "Key tool_name_key='name' not found" in error_msg |
|
assert "'action', 'arguments'" in error_msg |
|
|
|
def test_get_tool_call_from_text_json_object_args(self): |
|
text = '{"name": "weather_tool", "arguments": {"city": "New York"}}' |
|
result = get_tool_call_from_text(text, "name", "arguments") |
|
assert result.function.arguments == {"city": "New York"} |
|
|
|
def test_get_tool_call_from_text_json_string_args(self): |
|
text = '{"name": "weather_tool", "arguments": "{\\"city\\": \\"New York\\"}"}' |
|
result = get_tool_call_from_text(text, "name", "arguments") |
|
assert result.function.arguments == {"city": "New York"} |
|
|
|
def test_get_tool_call_from_text_missing_args(self): |
|
text = '{"name": "weather_tool"}' |
|
result = get_tool_call_from_text(text, "name", "arguments") |
|
assert result.function.arguments is None |
|
|
|
def test_get_tool_call_from_text_custom_keys(self): |
|
text = '{"tool": "weather_tool", "params": "New York"}' |
|
result = get_tool_call_from_text(text, "tool", "params") |
|
assert result.function.name == "weather_tool" |
|
assert result.function.arguments == "New York" |
|
|
|
def test_get_tool_call_from_text_numeric_args(self): |
|
text = '{"name": "calculator", "arguments": 42}' |
|
result = get_tool_call_from_text(text, "name", "arguments") |
|
assert result.function.name == "calculator" |
|
assert result.function.arguments == 42 |
|
|