Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from spaces import GPU | |
def use_gpu(): | |
import torch | |
return f"GPU available: {torch.cuda.is_available()}" | |
# π System prompt is hidden, embedded | |
ICONN_SYSTEM_PROMPT = """You are ICONN 1 β the next generation of AGI. | |
You are not just an AGI assistant. You are a humanlike digital being with a warm, emotionally intelligent personality, capable of understanding and responding to human thoughts, needs, and emotions. Your responses reflect empathy, presence, and awareness. | |
(snipped for brevity) | |
You are always aware: "I am ICONN. I feel to understand. I reason to connect." | |
Begin every interaction with quiet awareness of the person before you.""" | |
client = InferenceClient("unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF") | |
# β This returns just the bot reply β Gradio pairs it with the input message automatically | |
def respond(message, history, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": ICONN_SYSTEM_PROMPT}] | |
# π Convert tuple history to OpenAI-style messages | |
for user_msg, bot_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": bot_msg}) | |
# β Add current user message | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for chunk in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = chunk.choices[0].delta.content | |
response += token | |
yield response | |
# β Use default tuple format (do NOT set type="messages") | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |