File size: 1,176 Bytes
eb034fe 5667d33 eb034fe 5667d33 eb034fe 20006a6 eb034fe 5667d33 eb034fe 5667d33 eb034fe 5667d33 eb034fe 5667d33 eb034fe 5667d33 eb034fe 5667d33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from PIL import Image
import random
# Exemple de base de données de mots
WORDS_DATABASE = {
"cat": {"fr": "chat", "audio": None},
"house": {"fr": "maison", "audio": None},
}
# Simule un modèle de reconnaissance d'image
def recognize_object(image):
return random.choice(list(WORDS_DATABASE.keys()))
# Fonction principale
def handle_drawing(image):
recognized_object = recognize_object(image)
french_translation = WORDS_DATABASE.get(recognized_object, {}).get("fr", "Inconnu")
response = f"Objet reconnu : {recognized_object.capitalize()} (Français : {french_translation})"
return response, None
# Interface utilisateur
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Apprends l'Anglais en Dessinant !")
canvas = gr.Sketchpad(label="Dessine ici !", shape=(256, 256))
response_text = gr.Textbox(label="Résultat", interactive=False)
submit_button = gr.Button("Reconnaître")
submit_button.click(handle_drawing, inputs=[canvas], outputs=[response_text, None])
return demo
# Lancement
if __name__ == "__main__":
demo = create_interface()
demo.launch()
|