Spaces:
Sleeping
Sleeping
File size: 1,806 Bytes
058b8cf ee62c26 230477c ee62c26 058b8cf ee62c26 058b8cf ee62c26 058b8cf ee62c26 058b8cf ee62c26 058b8cf ee62c26 058b8cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import mimetypes
from transformers import pipeline
from tools.asr_tool import transcribe_audio
from tools.excel_tool import analyze_excel
from tools.search_tool import search_duckduckgo
class GaiaAgent:
def __init__(self):
print("Loading model...")
self.llm = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2", max_new_tokens=512, device="cpu")
def __call__(self, question: str, files: list = None):
trace = []
context = ""
if files:
for file in files:
mime, _ = mimetypes.guess_type(file.name)
if mime and mime.startswith("audio"):
transcription = transcribe_audio(file.name)
trace.append(f"Transcribed audio: {transcription}")
context += f"\nTranscription: {transcription}"
elif mime and ("spreadsheet" in mime or file.name.endswith(".xlsx")):
result = analyze_excel(file.name)
trace.append(f"Excel analysis: {result}")
context += f"\nSpreadsheet data: {result}"
if "http" in question or "Wikipedia" in question or "YouTube" in question or "search" in question.lower():
trace.append("Performing DuckDuckGo search...")
search_result = search_duckduckgo(question)
trace.append(f"Summary from search: {search_result}")
context += f"\nSearch Result: {search_result}"
# Include the original question
prompt = f"""
Answer the question based on the context below.
Context: {context}
Question: {question}
Answer:
"""
response = self.llm(prompt)[0]['generated_text'].split("Answer:")[-1].strip()
trace.append(response)
return response, "\n".join(trace)
|