Freddolin's picture
Update agent.py
15b9880 verified
raw
history blame
6.9 kB
import os
import json
import re
from typing import Tuple, Dict, Any
from transformers import pipeline
from tools.asr_tool import transcribe_audio
from tools.excel_tool import analyze_excel
from tools.search_tool import search_duckduckgo
class GaiaAgent:
def __init__(self):
token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not token:
raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.")
# Använd en mer kapabel modell för bättre reasoning
self.llm = pipeline(
"text-generation",
model="mistralai/Mistral-7B-Instruct-v0.2",
use_auth_token=token,
device="cpu",
max_new_tokens=1024, # Öka för mer detaljerade svar
do_sample=False,
temperature=0.1,
return_full_text=False
)
# System prompt enligt GAIA:s instruktioner
self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
def extract_final_answer(self, text: str) -> str:
"""Extrahera det slutliga svaret från modellens output"""
# Leta efter FINAL ANSWER: mönster
final_answer_match = re.search(r'FINAL ANSWER:\s*(.+?)(?:\n|$)', text, re.IGNORECASE)
if final_answer_match:
return final_answer_match.group(1).strip()
# Fallback: ta sista meningen om inget FINAL ANSWER hittas
sentences = text.strip().split('\n')
return sentences[-1].strip() if sentences else text.strip()
def needs_tool(self, question: str) -> Tuple[str, bool]:
"""Bestäm vilket verktyg som behövs baserat på frågan"""
question_lower = question.lower()
# Kontrollera för audio-filer
if any(ext in question_lower for ext in ['.mp3', '.wav', '.m4a', '.flac']):
return 'audio', True
# Kontrollera för Excel-filer
if any(ext in question_lower for ext in ['.xlsx', '.xls', '.csv']):
return 'excel', True
# Kontrollera för web-sökning
if any(keyword in question_lower for keyword in ['search', 'find', 'lookup', 'http', 'www.', 'website']):
return 'search', True
# Kontrollera för matematiska beräkningar
if any(keyword in question_lower for keyword in ['calculate', 'compute', 'sum', 'average', 'count']):
return 'math', True
return 'llm', False
def process_with_tools(self, question: str, tool_type: str) -> Tuple[str, str]:
"""Bearbeta frågan med specifika verktyg"""
trace_log = f"Detected {tool_type} task. Processing...\n"
try:
if tool_type == 'audio':
# Extrahera filnamn från frågan
audio_files = re.findall(r'\b[\w\-_]+\.(mp3|wav|m4a|flac)\b', question, re.IGNORECASE)
if audio_files:
result = transcribe_audio(audio_files[0])
trace_log += f"Audio transcription: {result}\n"
return result, trace_log
elif tool_type == 'excel':
# Extrahera filnamn från frågan
excel_files = re.findall(r'\b[\w\-_]+\.(xlsx|xls|csv)\b', question, re.IGNORECASE)
if excel_files:
result = analyze_excel(excel_files[0])
trace_log += f"Excel analysis: {result}\n"
return result, trace_log
elif tool_type == 'search':
# Extrahera sökfråga
search_query = question
result = search_duckduckgo(search_query)
trace_log += f"Search results: {result}\n"
return result, trace_log
except Exception as e:
trace_log += f"Error using {tool_type} tool: {str(e)}\n"
return f"Error: {str(e)}", trace_log
return "No valid input found for tool", trace_log
def reason_with_llm(self, question: str, context: str = "") -> Tuple[str, str]:
"""Använd LLM för reasoning med kontext"""
trace_log = "Using LLM for reasoning...\n"
# Bygg prompt med system instruktioner
if context:
prompt = f"{self.system_prompt}\n\nContext: {context}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
else:
prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
try:
response = self.llm(prompt)[0]["generated_text"]
trace_log += f"LLM response: {response}\n"
return response, trace_log
except Exception as e:
trace_log += f"Error with LLM: {str(e)}\n"
return f"Error: {str(e)}", trace_log
def __call__(self, question: str) -> Tuple[str, str]:
"""Huvudfunktion som bearbetar frågan"""
total_trace = f"Processing question: {question}\n"
# Bestäm vilka verktyg som behövs
tool_type, needs_tool = self.needs_tool(question)
total_trace += f"Tool needed: {tool_type}\n"
context = ""
if needs_tool and tool_type != 'llm':
# Använd verktyg för att samla kontext
tool_result, tool_trace = self.process_with_tools(question, tool_type)
total_trace += tool_trace
context = tool_result
# Använd LLM för reasoning
llm_response, llm_trace = self.reason_with_llm(question, context)
total_trace += llm_trace
# Extrahera slutligt svar
final_answer = self.extract_final_answer(llm_response)
total_trace += f"Final answer extracted: {final_answer}\n"
return final_answer, total_trace
def format_for_submission(self, task_id: str, question: str) -> Dict[str, Any]:
"""Formatera svar för GAIA-submission"""
answer, trace = self.__call__(question)
return {
"task_id": task_id,
"model_answer": answer,
"reasoning_trace": trace
}