Spaces:
Sleeping
Sleeping
import os | |
import json | |
import re | |
from typing import Tuple, Dict, Any | |
from transformers import pipeline | |
from tools.asr_tool import transcribe_audio | |
from tools.excel_tool import analyze_excel | |
from tools.search_tool import search_duckduckgo | |
class GaiaAgent: | |
def __init__(self): | |
token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
if not token: | |
raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.") | |
# Använd en mer kapabel modell för bättre reasoning | |
self.llm = pipeline( | |
"text-generation", | |
model="mistralai/Mistral-7B-Instruct-v0.2", | |
use_auth_token=token, | |
device="cpu", | |
max_new_tokens=1024, # Öka för mer detaljerade svar | |
do_sample=False, | |
temperature=0.1, | |
return_full_text=False | |
) | |
# System prompt enligt GAIA:s instruktioner | |
self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.""" | |
def extract_final_answer(self, text: str) -> str: | |
"""Extrahera det slutliga svaret från modellens output""" | |
# Leta efter FINAL ANSWER: mönster | |
final_answer_match = re.search(r'FINAL ANSWER:\s*(.+?)(?:\n|$)', text, re.IGNORECASE) | |
if final_answer_match: | |
return final_answer_match.group(1).strip() | |
# Fallback: ta sista meningen om inget FINAL ANSWER hittas | |
sentences = text.strip().split('\n') | |
return sentences[-1].strip() if sentences else text.strip() | |
def needs_tool(self, question: str) -> Tuple[str, bool]: | |
"""Bestäm vilket verktyg som behövs baserat på frågan""" | |
question_lower = question.lower() | |
# Kontrollera för audio-filer | |
if any(ext in question_lower for ext in ['.mp3', '.wav', '.m4a', '.flac']): | |
return 'audio', True | |
# Kontrollera för Excel-filer | |
if any(ext in question_lower for ext in ['.xlsx', '.xls', '.csv']): | |
return 'excel', True | |
# Kontrollera för web-sökning | |
if any(keyword in question_lower for keyword in ['search', 'find', 'lookup', 'http', 'www.', 'website']): | |
return 'search', True | |
# Kontrollera för matematiska beräkningar | |
if any(keyword in question_lower for keyword in ['calculate', 'compute', 'sum', 'average', 'count']): | |
return 'math', True | |
return 'llm', False | |
def process_with_tools(self, question: str, tool_type: str) -> Tuple[str, str]: | |
"""Bearbeta frågan med specifika verktyg""" | |
trace_log = f"Detected {tool_type} task. Processing...\n" | |
try: | |
if tool_type == 'audio': | |
# Extrahera filnamn från frågan | |
audio_files = re.findall(r'\b[\w\-_]+\.(mp3|wav|m4a|flac)\b', question, re.IGNORECASE) | |
if audio_files: | |
result = transcribe_audio(audio_files[0]) | |
trace_log += f"Audio transcription: {result}\n" | |
return result, trace_log | |
elif tool_type == 'excel': | |
# Extrahera filnamn från frågan | |
excel_files = re.findall(r'\b[\w\-_]+\.(xlsx|xls|csv)\b', question, re.IGNORECASE) | |
if excel_files: | |
result = analyze_excel(excel_files[0]) | |
trace_log += f"Excel analysis: {result}\n" | |
return result, trace_log | |
elif tool_type == 'search': | |
# Extrahera sökfråga | |
search_query = question | |
result = search_duckduckgo(search_query) | |
trace_log += f"Search results: {result}\n" | |
return result, trace_log | |
except Exception as e: | |
trace_log += f"Error using {tool_type} tool: {str(e)}\n" | |
return f"Error: {str(e)}", trace_log | |
return "No valid input found for tool", trace_log | |
def reason_with_llm(self, question: str, context: str = "") -> Tuple[str, str]: | |
"""Använd LLM för reasoning med kontext""" | |
trace_log = "Using LLM for reasoning...\n" | |
# Bygg prompt med system instruktioner | |
if context: | |
prompt = f"{self.system_prompt}\n\nContext: {context}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer." | |
else: | |
prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer." | |
try: | |
response = self.llm(prompt)[0]["generated_text"] | |
trace_log += f"LLM response: {response}\n" | |
return response, trace_log | |
except Exception as e: | |
trace_log += f"Error with LLM: {str(e)}\n" | |
return f"Error: {str(e)}", trace_log | |
def __call__(self, question: str) -> Tuple[str, str]: | |
"""Huvudfunktion som bearbetar frågan""" | |
total_trace = f"Processing question: {question}\n" | |
# Bestäm vilka verktyg som behövs | |
tool_type, needs_tool = self.needs_tool(question) | |
total_trace += f"Tool needed: {tool_type}\n" | |
context = "" | |
if needs_tool and tool_type != 'llm': | |
# Använd verktyg för att samla kontext | |
tool_result, tool_trace = self.process_with_tools(question, tool_type) | |
total_trace += tool_trace | |
context = tool_result | |
# Använd LLM för reasoning | |
llm_response, llm_trace = self.reason_with_llm(question, context) | |
total_trace += llm_trace | |
# Extrahera slutligt svar | |
final_answer = self.extract_final_answer(llm_response) | |
total_trace += f"Final answer extracted: {final_answer}\n" | |
return final_answer, total_trace | |
def format_for_submission(self, task_id: str, question: str) -> Dict[str, Any]: | |
"""Formatera svar för GAIA-submission""" | |
answer, trace = self.__call__(question) | |
return { | |
"task_id": task_id, | |
"model_answer": answer, | |
"reasoning_trace": trace | |
} | |