File size: 6,901 Bytes
13755f8
15b9880
 
 
c3c803a
 
 
13755f8
c3c803a
 
 
13755f8
 
 
15b9880
 
13755f8
 
 
24816c1
13755f8
15b9880
 
 
 
13755f8
15b9880
 
 
 
 
 
 
 
 
 
 
 
 
 
5617dda
15b9880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c36be6c
15b9880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c36be6c
15b9880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13755f8
15b9880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee62c26
15b9880
 
 
 
 
 
 
 
 
058b8cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import json
import re
from typing import Tuple, Dict, Any
from transformers import pipeline
from tools.asr_tool import transcribe_audio
from tools.excel_tool import analyze_excel
from tools.search_tool import search_duckduckgo

class GaiaAgent:
    def __init__(self):
        token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
        if not token:
            raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.")
        
        # Använd en mer kapabel modell för bättre reasoning
        self.llm = pipeline(
            "text-generation",
            model="mistralai/Mistral-7B-Instruct-v0.2",
            use_auth_token=token,
            device="cpu",
            max_new_tokens=1024,  # Öka för mer detaljerade svar
            do_sample=False,
            temperature=0.1,
            return_full_text=False
        )
        
        # System prompt enligt GAIA:s instruktioner
        self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""

    def extract_final_answer(self, text: str) -> str:
        """Extrahera det slutliga svaret från modellens output"""
        # Leta efter FINAL ANSWER: mönster
        final_answer_match = re.search(r'FINAL ANSWER:\s*(.+?)(?:\n|$)', text, re.IGNORECASE)
        if final_answer_match:
            return final_answer_match.group(1).strip()
        
        # Fallback: ta sista meningen om inget FINAL ANSWER hittas
        sentences = text.strip().split('\n')
        return sentences[-1].strip() if sentences else text.strip()

    def needs_tool(self, question: str) -> Tuple[str, bool]:
        """Bestäm vilket verktyg som behövs baserat på frågan"""
        question_lower = question.lower()
        
        # Kontrollera för audio-filer
        if any(ext in question_lower for ext in ['.mp3', '.wav', '.m4a', '.flac']):
            return 'audio', True
        
        # Kontrollera för Excel-filer
        if any(ext in question_lower for ext in ['.xlsx', '.xls', '.csv']):
            return 'excel', True
        
        # Kontrollera för web-sökning
        if any(keyword in question_lower for keyword in ['search', 'find', 'lookup', 'http', 'www.', 'website']):
            return 'search', True
        
        # Kontrollera för matematiska beräkningar
        if any(keyword in question_lower for keyword in ['calculate', 'compute', 'sum', 'average', 'count']):
            return 'math', True
        
        return 'llm', False

    def process_with_tools(self, question: str, tool_type: str) -> Tuple[str, str]:
        """Bearbeta frågan med specifika verktyg"""
        trace_log = f"Detected {tool_type} task. Processing...\n"
        
        try:
            if tool_type == 'audio':
                # Extrahera filnamn från frågan
                audio_files = re.findall(r'\b[\w\-_]+\.(mp3|wav|m4a|flac)\b', question, re.IGNORECASE)
                if audio_files:
                    result = transcribe_audio(audio_files[0])
                    trace_log += f"Audio transcription: {result}\n"
                    return result, trace_log
            
            elif tool_type == 'excel':
                # Extrahera filnamn från frågan
                excel_files = re.findall(r'\b[\w\-_]+\.(xlsx|xls|csv)\b', question, re.IGNORECASE)
                if excel_files:
                    result = analyze_excel(excel_files[0])
                    trace_log += f"Excel analysis: {result}\n"
                    return result, trace_log
            
            elif tool_type == 'search':
                # Extrahera sökfråga
                search_query = question
                result = search_duckduckgo(search_query)
                trace_log += f"Search results: {result}\n"
                return result, trace_log
            
        except Exception as e:
            trace_log += f"Error using {tool_type} tool: {str(e)}\n"
            return f"Error: {str(e)}", trace_log
        
        return "No valid input found for tool", trace_log

    def reason_with_llm(self, question: str, context: str = "") -> Tuple[str, str]:
        """Använd LLM för reasoning med kontext"""
        trace_log = "Using LLM for reasoning...\n"
        
        # Bygg prompt med system instruktioner
        if context:
            prompt = f"{self.system_prompt}\n\nContext: {context}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
        else:
            prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
        
        try:
            response = self.llm(prompt)[0]["generated_text"]
            trace_log += f"LLM response: {response}\n"
            return response, trace_log
        except Exception as e:
            trace_log += f"Error with LLM: {str(e)}\n"
            return f"Error: {str(e)}", trace_log

    def __call__(self, question: str) -> Tuple[str, str]:
        """Huvudfunktion som bearbetar frågan"""
        total_trace = f"Processing question: {question}\n"
        
        # Bestäm vilka verktyg som behövs
        tool_type, needs_tool = self.needs_tool(question)
        total_trace += f"Tool needed: {tool_type}\n"
        
        context = ""
        if needs_tool and tool_type != 'llm':
            # Använd verktyg för att samla kontext
            tool_result, tool_trace = self.process_with_tools(question, tool_type)
            total_trace += tool_trace
            context = tool_result
        
        # Använd LLM för reasoning
        llm_response, llm_trace = self.reason_with_llm(question, context)
        total_trace += llm_trace
        
        # Extrahera slutligt svar
        final_answer = self.extract_final_answer(llm_response)
        total_trace += f"Final answer extracted: {final_answer}\n"
        
        return final_answer, total_trace

    def format_for_submission(self, task_id: str, question: str) -> Dict[str, Any]:
        """Formatera svar för GAIA-submission"""
        answer, trace = self.__call__(question)
        
        return {
            "task_id": task_id,
            "model_answer": answer,
            "reasoning_trace": trace
        }