htrflow_mcp / app.py
Gabriel's picture
Update app.py
6d382b7 verified
raw
history blame
9.84 kB
import gradio as gr
import json
import tempfile
import os
from typing import List, Optional, Literal
from PIL import Image
import spaces
from pathlib import Path
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline
DEFAULT_OUTPUT = "alto"
CHOICES = ["txt", "alto", "page", "json"]
PIPELINE_CONFIGS = {
"letter_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"letter_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"spread_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
"spread_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
}
@spaces.GPU
def htrflow_htr(image_path: str, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_swedish", output_format: Literal["txt", "alto", "page", "json"] = DEFAULT_OUTPUT, custom_settings: Optional[str] = None) -> str:
"""
Process handwritten text recognition (HTR) on uploaded images and return extracted text in the specified format.
This function uses machine learning models to automatically detect, segment, and transcribe handwritten text
from historical documents. It supports different document types and languages, with specialized models
trained on historical handwriting from the Swedish National Archives (Riksarkivet).
Args:
image_path (str): The file path or URL to the image containing handwritten text to be processed.
Supports common image formats like JPG, PNG, TIFF.
document_type (Literal): The type of document and language processing template to use.
Available options:
- "letter_english": Single-page English handwritten letters (default: "letter_swedish")
- "letter_swedish": Single-page Swedish handwritten letters
- "spread_english": Two-page spread English documents with marginalia
- "spread_swedish": Two-page spread Swedish documents with marginalia
Default: "letter_swedish"
output_format (Literal): The format for the output file containing the transcribed text.
Available options:
- "txt": Plain text format with line breaks
- "alto": ALTO XML format with detailed layout and coordinate information
- "page": PAGE XML format with structural markup and positioning data
- "json": JSON format with structured text, layout information and metadata
Default: "alto"
Note: Both "alto" and "page" formats are XML-based with layout information.
custom_settings (Optional[str]): Advanced users can provide custom pipeline configuration as a
JSON string to override the default processing steps. This allows
fine-tuning of model parameters, batch sizes, and processing workflow.
Default: None (uses predefined configuration for document_type)
Returns:
str: The file path to the generated output file containing the transcribed text in the requested format,
or an error message if processing fails. The output file will be named based on the original
image filename with the appropriate extension (.txt, .xml, or .json).
"""
if not image_path:
return "Error: No image provided"
try:
original_filename = Path(image_path).stem or "output"
if custom_settings:
try:
config = json.loads(custom_settings)
except json.JSONDecodeError:
return "Error: Invalid JSON in custom_settings parameter"
else:
config = PIPELINE_CONFIGS[document_type]
collection = Collection([image_path])
pipeline = Pipeline.from_config(config)
try:
processed_collection = pipeline.run(collection)
except Exception as pipeline_error:
return f"Error: Pipeline execution failed: {str(pipeline_error)}"
temp_dir = Path(tempfile.mkdtemp())
export_dir = temp_dir / output_format
processed_collection.save(directory=str(export_dir), serializer=output_format)
output_file_path = None
for root, _, files in os.walk(export_dir):
for file in files:
old_path = os.path.join(root, file)
file_ext = Path(file).suffix
new_filename = f"{original_filename}.{output_format}" if not file_ext else f"{original_filename}{file_ext}"
new_path = os.path.join(root, new_filename)
os.rename(old_path, new_path)
output_file_path = new_path
break
if output_file_path and os.path.exists(output_file_path):
return output_file_path
else:
return "Error: Failed to generate output file"
except Exception as e:
return f"Error: HTR processing failed: {str(e)}"
def extract_text_from_collection(collection: Collection) -> str:
text_lines = []
for page in collection.pages:
for node in page.traverse():
if hasattr(node, "text") and node.text:
text_lines.append(node.text)
return "\n".join(text_lines)
def create_htrflow_mcp_server():
demo = gr.Interface(
fn=htrflow_htr,
inputs=[
gr.Image(type="filepath", label="Upload Image or Enter URL"),
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"),
gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"),
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""),
],
outputs=gr.File(label="Download Output File"),
title="HTRflow MCP Server",
description="Process handwritten text from uploaded file or URL and get output file in specified format",
api_name="htrflow_htr",
)
return demo
if __name__ == "__main__":
demo = create_htrflow_mcp_server()
demo.launch(mcp_server=True, share=False, debug=False)